The Continuous Time Service Network Design Problem

Consolidation carriers transport shipments that are small relative to trailer capacity. To be cost-effective, the carrier must consolidate shipments, which requires coordinating their paths in both space and time, i.e., the carrier must solve a Service Network Design problem. Most service network design models rely on discretization of time, i.e., instead of determining the exact … Read more

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: $P = \cset{(w,x)\in \reals \times \set{0,1}^N}{w \leq f(a’x + d), b’x \leq B}$ where $N$ is a positive integer, $f:\reals \mapsto \reals$ is a concave function, $a, b \in \reals^N$ are nonnegative vectors, $d$ is a real … Read more

A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching

It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in electrical networks. In fact, the USA Energy Policy Act of 2005 (Section 1223) states that the U.S. should “encourage, as appropriate, the deployment of advanced transmission technologies” including “optimized transmission line configurations”. As such, … Read more

Some lower bounds on sparse outer approximations of polytopes

Motivated by the need to better understand the properties of sparse cutting-planes used in mixed integer programming solvers, the paper [1] studied the idealized problem of how well a polytope is approximated by the use of sparse valid inequalities. As an extension to this work, we study the following “less idealized” questions in this pa- … Read more

On the polyhedrality of cross and quadrilateral closures

Split cuts form a well-known class of valid inequalities for mixed-integer programming problems. Cook, Kannan and Schrijver (1990) showed that the split closure of a rational polyhedron $P$ is again a polyhedron. In this paper, we extend this result from a single rational polyhedron to the union of a finite number of rational polyhedra. We … Read more

Certificates of Optimality and Sensitivity Analysis using Generalized Subadditive Generator Functions: A test study on Knapsack Problems

We introduce a family of subadditive functions called Generator Functions for mixed integer linear programs. These functions were previously defined for pure integer programs with non-negative entries by Klabjan [13]. They are feasible in the subadditive dual and we show that they are enough to achieve strong duality. Several properties of the functions are shown. … Read more

An MILP approach to Multi-location, Multi-Period Equipment Selection for Surface Mining with Case Studies

In the surface mining industry, the Equipment Selection Problem involves choosing an appropriate fleet of trucks and loaders such that the long-term mine plan can be satisfied. An important characteristic for multi-location (multi-location and multi-dumpsite) mines is that the underlying problem is a multi-commodity flow problem. The problem is therefore at least as difficult as … Read more

Lower Bounding Procedures for the Single Allocation Hub Location Problem

This paper proposes a new lower bounding procedure for the Uncapacitated Single Allocation p-Hub Median Problem based on Lagrangean relaxation. For solving the resulting Lagrangean subproblem, the given problem structure is exploited: it can be decomposed into smaller subproblems that can be solved efficiently by combinatorial algorithms. Our computational experiments for some benchmark instances demonstrate … Read more

Mathematical Programming Models Based on Hub Covers in Graph Query Processing

The use of graph databases for social networks, images, web links, pathways and so on, has been increasing at a fast pace and promotes the need for efficient graph query processing on such databases. In this study, we discuss graph query processing — referred to as graph matching — and an inherent optimization problem known … Read more

A Compact Linearisation of Euclidean Single Allocation Hub Location Problems

Hub location problems are strategic network planning problems. They formalise the challenge of mutually exchanging shipments between a large set of depots. The aim is to choose a set of hubs (out of a given set of possible hubs) and connect every depot to a hub so that the total transport costs for exchanging shipments … Read more