Approximation of the Quadratic Knapsack Problem

We study the approximability of the classical quadratic knapsack problem (QKP) on special graph classes. In this case the quadratic terms of the objective function are not given for each pair of knapsack items. Instead an edge weighted graph G = (V,E) whose vertices represent the knapsack items induces a quadratic profit p_ij for the … Read more

Memory-Aware Parallelized RLT3 for Solving Quadratic Assignment Problems

We present a coarse-grain (outer-loop) parallel implementation of RLT1/2/3 (Level 1, 2, and 3 Reformulation and Linearization Technique—in that order) bound calculations for the QAP within a branch-and-bound procedure. For a search tree node of size S, each RLT3 and RLT2 bound calculation iteration is parallelized S ways, with each of S processors performing O(S5) … Read more

A Hierarchy of Subgraph Projection-Based Semidefinite Relaxations for some NP-Hard Graph Optimization Problems

Many important NP-hard combinatorial problems can be efficiently approximated using semidefinite programming relaxations. We propose a new hierarchy of semidefinite relaxations for classes of such problems that based on graphs and for which the projection of the problem onto a subgraph shares the same structure as the original problem. This includes the well-studied max-cut and … Read more

Approaches to a real-world train timetabling problem in a railway node

We consider the Train Timetabling Problem (TTP) in a railway node (i.e. a set of stations in an urban area interconnected by tracks), which calls for determining the best schedule for a given set of trains during a given time horizon, while satisfying several track operational constraints. In particular, we consider the context of a … Read more

Error bounds for mixed integer linear optimization problems

We introduce computable a-priori and a-posteriori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the LP relaxation of a mixed integer linear optimization problem. Treating the mesh size of integer vectors as a parameter allows us to study the effect of different `granularities’ in the … Read more

Monomial-wise Optimal Separable Underestimators for Mixed-Integer Polynomial Optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard approaches … Read more

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming

In the \emph{incremental knapsack problem} ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items … Read more

Efficient upper and lower bounds for global mixed-integer optimal control

We present a control problem for an electrical vehicle. Its motor can be operated in two discrete modes, leading either to acceleration and energy consumption, or to a recharging of the battery. Mathematically, this leads to a mixed-integer optimal control problem (MIOCP) with a discrete feasible set for the controls taking into account the electrical … Read more

Finding Diverse Solutions of High Quality to Binary Integer Programs

Typical output from an optimization solver is a single optimal solution. At the same time, a set of high-quality and diverse solutions could be beneficial in a variety of contexts, for example problems involving imperfect information, or those for which the structure of high-quality solution vectors can reveal meaningful insights. In view of this, we … Read more

A Practical Iterative Algorithm for the Art Gallery Problem using Integer Linear Programming

In the last few decades, the search for exact algorithms for known NP-hard geometric problems has intensified. Many of these solutions make use of Integer Linear Programming (ILP) modeling and rely on state of the art solvers, to be able to find optimal solutions for large instances in a matter of minutes. In this work, … Read more