Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems — including multi-constraint variants — by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without … Read more

On the generation of cutting planes which maximize the bound improvement

We propose the bound-optimal cutting plane method. It is a new paradigm for cutting plane generation in Mixed Integer Programming allowing for the simultaneous generation of k cuts which, when added to the current Linear Programming elaxation, yield the largest bound improvement. By Linear Programming duality arguments and standard linearization techniques we show that, for … Read more

Computing a Cournot Equilibrium in Integers

We give an efficient algorithm for computing a Cournot equilibrium when the producers are confined to integers, the inverse demand function is linear, and costs are quadratic. The method also establishes existence, which follows in much more generality because the problem can be modelled as a potential game. Citation School of Operations Research and Information … Read more

Strongly Agree or Strongly Disagree?: Rating Features in Support Vector Machines

In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a factor is in agreement with a … Read more

Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service System Staffing and Scheduling with Arrival Rate Uncertainty

We study server scheduling in multiclass service systems under stochastic uncertainty in the customer arrival volumes. Common practice in such systems is to first identify staffing levels, and then determine schedules for the servers that cover these targets. We propose a new stochastic integer programming model that integrates these two decisions, which can yield lower … Read more

PEBBL: An Object-Oriented Framework for Scalable Parallel Branch and Bound

PEBBL is a C++ class library implementing the underlying operations needed to support a wide variety of branch-and-bound algorithms in a message-passing parallel computing environment. Deriving application-speci c classes from PEBBL, one may create parallel branch-and-bound applications through a process focused on the unique aspects of the application, while relying on PEBBL for generic aspects of … Read more

Exact Algorithms for Arc and Node Routing Problems

Routing problems stand among the hardest combinatorial problems to find high quality bounds or to prove new optimal solutions. In this thesis, we tackle the Capacitated Arc Routing Problem (CARP) and the Generalized Vehicle Routing Problem (GVRP). For both problems, there are a set of customers spread over a given graph, where each customer has … Read more

Mathematical Programming: Turing completeness and applications to software analysis

Mathematical Programming is Turing complete, and can be used as a general-purpose declarative language. We present a new constructive proof of this fact, and showcase its usefulness by discussing an application to finding the hardest input of any given program running on a Minsky Register Machine. We also discuss an application of Mathematical Programming to … Read more

Optimization Methods for Disease Prevention and Epidemic Control

This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease … Read more

A pseudo-polynomial size formulation for 2-stage two-dimensional knapsack problems

Two dimensional cutting problems are about obtaining a set of rectangular items from a set of rectangular stock pieces and are of great relevance in industry, whenever a sheet of wood, metal or other material has to be cut. In this paper, we consider the 2-stage two-dimensional knapsack (2TDK) problem which requires finding the maximum … Read more