A Polyhedral Study of the Semi-Continuous Knapsack Problem

We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem arises in a number of other contexts, e.g. it is a relaxation of general mixed-integer programming. We show how … Read more

Sampling Decisions in Optimum Experimental Design in the Light of Pontryagin’s Maximum Principle

Optimum Experimental Design (OED) problems are optimization problems in which an experimental setting and decisions on when to measure – the so-called sampling design – are to be determined such that a follow-up parameter estimation yields accurate results for model parameters. In this paper we use the interpretation of OED as optimal control problems with … Read more

On the Robust Knapsack Problem

We consider an uncertain variant of the knapsack problem that arises when the exact weight of each item is not exactly known in advance but belongs to a given interval, and the number of items whose weight differs from the nominal value is bounded by a constant. We analyze the worsening of the optimal solution … Read more

The Symmetric Quadratic Traveling Salesman Problem

In the quadratic traveling salesman problem a cost is associated with any three nodes traversed in succession. This structure arises, e.g., if the succession of two edges represents energetic conformations, a change of direction or a possible change of transportation means. In the symmetric case, costs do not depend on the direction of traversal. We … Read more

Design and Verify: A New Scheme for Generating Cutting-Planes

A cutting-plane procedure for integer programming (IP) problems usually involves invoking a black-box procedure (such as the Gomory-Chvatal (GC) procedure) to compute a cutting-plane. In this paper, we describe an alternative paradigm of using the same cutting-plane black-box. This involves two steps. In the first step, we design an inequality cx = d + 1\} … Read more

Inexact solution of NLP subproblems in MINLP

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness … Read more

Inexact solution of NLP subproblems in MINLP

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness … Read more

Branch-and-Cut for Separable Piecewise Linear Optimization: New Inequalities and Intersection with Semi-Continuous Constraints

We give new facets and valid inequalities for the separable piecewise linear optimization knapsack polytope. We also extend the inequalities to the case in which some of the variables are semi-continuous. In a companion paper (de Farias, Gupta, Kozyreff, Zhao, 2011) we demonstrate the efficiency of the inequalities when used as cuts in a branch-and-cut … Read more

Branch-and-Cut for Separable Piecewise Linear Optimization: Computation

We report and analyze the results of our extensive computational testing of branch-and-cut for piecewise linear optimization using the cutting planes given recently by Zhao and de Farias. Besides analysis of the performance of the cuts, we also analyze the effect of formulation on the performance of branch-and-cut. Finally, we report and analyze initial results … Read more

An algorithm for the separation of two-row cuts

We consider the question of finding deep cuts from a model constructed with two rows of a simplex tableau. To do that, we show how to reduce the complexity of setting up the polar of such model from a quadratic number of integer hull computations to a linear number of integer hull computations. Furthermore we … Read more