Branching proofs of infeasibility in low density subset sum problems

We prove that the subset sum problem has a polynomial time computable certificate of infeasibility for all $a$ weight vectors with density at most $1/(2n)$ and for almost all integer right hand sides. The certificate is branching on a hyperplane, i.e. by a methodology dual to the one explored by Lagarias and Odlyzko; Frieze; Furst … Read more

The Submodular Knapsack Polytope

The submodular knapsack set is the discrete lower level set of a submodular function. The modular case reduces to the classical linear 0-1 knapsack set. One motivation for studying the submodular knapsack polytope is to address 0-1 programming problems with uncertain coefficients. Under various assumptions, a probabilistic constraint on 0-1 variables can be modeled as … Read more

Extended Formulations for Packing and Partitioning Orbitopes

We give compact extended formulations for the packing and partitioning orbitopes (with respect to the full symmetric group) described and analyzed in Kaibel and Pfetsch (Math. Program. 114 (1), 2008, 1-36). These polytopes are the convex hulls of all 0/1-matrices with lexicographically sorted columns and at most, resp. exactly, one 1-entry per row. They are … Read more

On Non-Convex Quadratic Programming with Box Constraints

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, … Read more

Algorithms over Arc-time Indexed Formulations for Single and Parallel Machine Scheduling Problems

This paper presents algorithms for single and parallel identical machine scheduling problems. While the overall algorithm can be viewed as a branch-cut-and-price over a very large extended formulation, a number of auxiliary techniques are necessary to make the column generation effective. Those techniques include a powerful fixing by reduced costs and a new proposed dual … Read more

A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions

We investigate the problem of simultaneously determining the location of facilities and the design of vehicle routes to serve customer demands under vehicle and facility capacity restrictions. We present a set-partitioning-based formulation of the problem and study the relationship between his formulation and the graph-based formulations that have been used in previous studies of this … Read more

Experiments with Branching using General Disjunctions

Branching is an important component of the branch-and-cut algorithm for solving mixed integer linear programs. Most solvers branch by imposing a disjunction of the form“$x_i \leq k \vee x_i \geq k+1$” for some integer $k$ and some integer-constrained variable $x_i$. A generalization of this branching scheme is to branch by imposing a more general disjunction … Read more

Two Row Mixed Integer Cuts Via Lifting

Recently, Andersen et al.(2007), Borozan and Cornuejols (2007) and Cornuejols and Margot(2007) characterized extreme inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts (Balas (1971)) derived using maximal lattice-free convex sets. In order to use these inequalities to obtain … Read more

Perspective Reformulations of Mixed Integer Nonlinear Programs with Indicator Variables

We study mixed integer nonlinear programs (MINLP)s that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume fixed values, and, when it is “turned on”, forces them to belong … Read more