The Noncooperative Fixed Charge Transportation Problem

We introduce the noncooperative fixed charge transportation problem (NFCTP), which is a game-theoretic extension of the fixed charge transportation problem. In the NFCTP, competing players solve coupled fixed charge transportation problems simultaneously. Three versions of the NFCTP are discussed and compared, which differ in their treatment of shared social costs. This may be used from … Read more

Adaptive Large Neighborhood Search for Mixed Integer Programming

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) … Read more

Weighted Thresholding Homotopy Method for Sparsity Constrained Optimization

Weighted or reweighted strategies have not been considered for sparsity constrained optimization. In this paper, we reformulate the sparsity constraint as an equivalent weighted l1-norm constraint in the sparsity constrained optimization problem. To solve the reformulated problem, we investigate the problem in the Lagrange dual framework, and prove that the strong duality property holds. Then … Read more

Large-scale Influence Maximization via Maximal Covering Location

Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based … Read more

Intersection cuts for factorable MINLP

Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection … Read more

Insight into the computation of Steiner minimal trees in Euclidean space of general dimension

We present well known properties related to the topology of Steiner minimal trees and to the geometric position of Steiner points, and investigate their application in the main exact algorithms that have been proposed for the Euclidean Steiner problem. We discuss the difficulty in the application of properties that were very successfully applied to solve … Read more

Convergence of Finite-Dimensional Approximations for Mixed-Integer Optimization with Differential Equations

We consider a direct approach to solve mixed-integer nonlinear optimization problems with constraints depending on initial and terminal conditions of an ordinary differential equation. In order to obtain a finite-dimensional problem, the dynamics are approximated using discretization methods. In the framework of general one-step methods, we provide sufficient conditions for the convergence of this approach … Read more

Consistency for 0-1 programming

Concepts of consistency have long played a key role in constraint programming but never developed in integer programming (IP). Consistency nonetheless plays a role in IP as well. For example, cutting planes can reduce backtracking by achieving various forms of consistency as well as by tightening the linear programming (LP) relaxation. We introduce a type … Read more

Generating feasible points for mixed-integer convex optimization problems by inner parallel cuts

In this article we introduce an inner parallel cutting plane method (IPCP) to compute good feasible points along with valid cutting planes for mixed-integer convex optimization problems. The method iteratively generates polyhedral outer approximations of an enlarged inner parallel set (EIPS) of the continuously relaxed feasible set. This EIPS possesses the crucial property that any … Read more

Sparse and Smooth Signal Estimation: Convexification of L0 Formulations

Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative conic quadratic relaxations that exploit not only the L0-“norm” … Read more