Min max (relative) set-regret combinatorial optimization

We consider combinatorial optimization problems with uncertainty in the cost vector. Recently a novel approach was developed to deal such uncertainties: instead of a single one robust solution, obtained by solving a min max problem, the authors consider a set of solutions obtained by solving a min max min problem. In this new approach the … Read more

A Scalable Algorithm for Sparse Portfolio Selection

The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum … Read more

An Online-Learning Approach to Inverse Optimization

In this paper, we demonstrate how to learn the objective function of a decision-maker while only observing the problem input data and the decision-maker’s corresponding decisions over multiple rounds. Our approach is based on online learning and works for linear objectives over arbitrary feasible sets for which we have a linear optimization oracle. As such, … Read more

The Gap Function: Evaluating Integer Programming Models over Multiple Right-hand Sides

For an integer programming model with fixed data, the linear programming relaxation gap is considered one of the most important measures of model quality. There is no consensus, however, on appropriate measures of model quality that account for data variation. In particular, when the right-hand side is not known exactly, one must assess a model … Read more

An Efficient Linear Programming Based Method for the Influence Maximization Problem in Social Networks

The influence maximization problem (IMP) aims to determine the most influential individuals within a social network. In this study first we develop a binary integer program that approximates the original problem by Monte Carlo sampling. Next, to solve IMP efficiently, we propose a linear programming relaxation based method with a provable worst case bound that … Read more

Interval-based Dynamic Discretization Discovery for Solving the Continuous-Time Service Network Design Problem

We introduce an effective and efficient iterative algorithm for solving the Continuous-Time Service Network Design Problem. The algorithm achieves its efficiency by carefully and dynamically refining partially time-expanded network models so that only a small number of small integer programs, defined over these networks, need to be solved. An extensive computational study shows that the … Read more

New Valid Inequalities for the Fixed-Charge and Single-Node Flow Polytopes

The most effective software packages for solving mixed 0-1 linear programs use strong valid linear inequalities derived from polyhedral theory. We introduce a new procedure which enables one to take known valid inequalities for the knapsack polytope, and convert them into valid inequalities for the fixed-charge and single-node flow polytopes. The resulting inequalities are very … Read more

Inexact cutting planes for two-stage mixed-integer stochastic programs

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer stochastic programs. Instead of using cutting planes that are always valid, our idea is to apply inexact cutting planes to the second-stage feasible regions that may cut away feasible integer second-stage solutions for some scenarios and may be overly conservative for others. … Read more

A convex integer programming approach for optimal sparse PCA

Principal component analysis (PCA) is one of the most widely used dimensionality reduction tools in scientific data analysis. The PCA direction, given by the leading eigenvector of a covariance matrix, is a linear combination of all features with nonzero loadings—this impedes interpretability. Sparse principal component analysis (SPCA) is a framework that enhances interpretability by incorporating … Read more

Endogenous Price Zones and Investment Incentives in Electricity Markets: An Application of Multilevel Optimization with Graph Partitioning

In the course of the energy transition, load and supply centers are growing apart in electricity markets worldwide, rendering regional price signals even more important to provide adequate locational investment incentives. This paper focuses on electricity markets that operate under a zonal pricing market design. For a fixed number of zones, we endogenously derive the … Read more