Strong mixed-integer programming formulations for trained neural networks

We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. … Read more

Pattern-based models and a cooperative parallel metaheuristic for high school timetabling problems

High school timetabling problems consist in building periodic timetables for class-teacher meetings considering compulsory and non-compulsory requisites. This family of problems has been widely studied since the 1950s, mostly via mixed-integer programming and metaheuristic techniques. However, the efficient obtention of optimal or near-optimal solutions is still a challenge for many problems of practical size. In … Read more

n-step cutset inequalities: facets for multi-module capacitated network design problem

Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on links. In network design problems, decisions are made on installation of flow transfer capacities on the links and routing of flow from a set of source nodes to a set of sink nodes through the links. Many … Read more

A new combinatorial algorithm for separable convex resource allocation with nested bound constraints

The separable convex resource allocation problem with nested bound constraints aims to allocate $B$ units of resources to $n$ activities to minimize a separable convex cost function, with lower and upper bounds on the total amount of resources that can be consumed by nested subsets of activities. We develop a new combinatorial algorithm to solve … Read more

Enhancing large neighbourhood search heuristics for Benders’ decomposition

A general enhancement of the Benders’ decomposition (BD) algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, few, if any, have been designed for BD. Further, typically the use of large neighbourhood search … Read more

A Scalable Algorithm for Sparse Portfolio Selection

The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum … Read more

Min max (relative) set-regret combinatorial optimization

We consider combinatorial optimization problems with uncertainty in the cost vector. Recently a novel approach was developed to deal such uncertainties: instead of a single one robust solution, obtained by solving a min max problem, the authors consider a set of solutions obtained by solving a min max min problem. In this new approach the … Read more

A Column and Constraint Algorithm for the Dynamic Knapsack Problem with Stochastic Item Sizes

We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can choose the next item dynamically based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We … Read more

An Online-Learning Approach to Inverse Optimization

In this paper, we demonstrate how to learn the objective function of a decision-maker while only observing the problem input data and the decision-maker’s corresponding decisions over multiple rounds. Our approach is based on online learning and works for linear objectives over arbitrary feasible sets for which we have a linear optimization oracle. As such, … Read more

The Gap Function: Evaluating Integer Programming Models over Multiple Right-hand Sides

For an integer programming model with fixed data, the linear programming relaxation gap is considered one of the most important measures of model quality. There is no consensus, however, on appropriate measures of model quality that account for data variation. In particular, when the right-hand side is not known exactly, one must assess a model … Read more