Global Optimization of Multilevel Electricity Market Models Including Network Design and Graph Partitioning

We consider the combination of a network design and graph partitioning model in a multilevel framework for determining the optimal network expansion and the optimal zonal configuration of zonal pricing electricity markets, which is an extension of the model discussed in [25] that does not include a network design problem. The two classical discrete optimization … Read more

A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems

Here we present a center-cut algorithm for convex mixed-integer nonlinear programming (MINLP) that can either be used as a primal heuristic or as a deterministic solution technique. Like many other algorithms for convex MINLP, the center-cut algorithm constructs a linear approximation of the original problem. The main idea of the algorithm is to use the … Read more

Combinatorial Integral Approximation for Mixed-Integer PDE-Constrained Optimization Problems

We apply the basic principles underlying combinatorial integral approximation methods for mixed-integer optimal control with ordinary differential equations in general, and the sum-up rounding algorithm specifically, to optimization problems with partial differential equation (PDE) constraints. By doing so, we identify two possible generalizations that are applicable to problems involving PDE constraints with mesh-dependent integer variables, … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Strong formulations for quadratic optimization with M-matrices and semi-continuous variables

We study quadratic optimization with semi-continuous variables and an M-matrix, i.e., PSD with non-positive off-diagonal entries. This structure arises in image segmentation, portfolio optimization, as well as a substructure of general quadratic optimization problems. We prove, under mild assumptions, that the minimization problem is solvable in polynomial time by showing its equivalence to a submodular … Read more

Optimal Black Start Allocation for Power System Restoration

Equipment failures, operator errors, natural disasters and cyber-attacks can and have caused extended blackouts of the electric grid. Even though such events are rare, preparedness for them is critical because extended power outages endanger human lives, compromise national security, or result in economic losses of billions of dollars. Since most of the generating units cannot … Read more

Least cost influence propagation in (social) networks

Influence maximization problems aim to identify key players in (social) networks and are typically motivated from viral marketing. In this work, we introduce and study the Generalized Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem variants and allows to overcome some of their limitations. A formulation that is based on the concept … Read more

A Notion of Total Dual Integrality for Convex, Semidefinite, and Extended Formulations

Total dual integrality is a powerful and unifying concept in polyhedral combinatorics and integer programming that enables the refinement of geometric min-max relations given by linear programming Strong Duality into combinatorial min-max theorems. The definition of total dual integrality (TDI) revolves around the existence of optimal dual solutions that are integral, and thus naturally applies … Read more

The Continuous Time Inventory Routing Problem

We consider a continuous time variant of the Inventory Routing Problem in which the maximum quantity that can delivered at a customer depends on the customer’s storage capacity and product inventory at the time of the delivery. We investigate critical components of a dynamic discretization discovery algorithm and demonstrate in an extensive computational study that … Read more

A polynomial time algorithm for the linearization problem of the QSPP and its applications

Given an instance of the quadratic shortest path problem (QSPP) on a digraph $G$, the linearization problem for the QSPP asks whether there exists an instance of the linear shortest path problem on $G$ such that the associated costs for both problems are equal for every $s$-$t$ path in $G$. We prove here that the … Read more