An Implementable Proximal Point Algorithmic Framework for Nuclear Norm Minimization

The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact … Read more

Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using … Read more

The Farkas Lemma Revisited

The Farkas Lemma is extended to simultaneous linear operator and polyhedral sublinear operator inequalities by Boolean valued analysis. Citation Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia Article Download View The Farkas Lemma Revisited

On Cone of Nonsymmetric Positive Semidefinite Matrices

In this paper, we analyze and characterize the cone of nonsymmetric positive semidefinite matrices (NS-psd). Firstly, we study basic properties of the geometry of the NS-psd cone and show that it is a hyperbolic but not homogeneous cone. Secondly, we prove that the NS-psd cone is a maximal convex subcone of $P_0$-matrix cone which is … Read more

Trace Norm Regularization: Reformulations, Algorithms, and Multi-task Learning

We consider a recently proposed optimization formulation of multi-task learning based on trace norm regularized least squares. While this problem may be formulated as a semidefinite program (SDP), its size is beyond general SDP solvers. Previous solution approaches apply proximal gradient methods to solve the primal problem. We derive new primal and dual reformulations of … Read more

A Hierarchy of Near-Optimal Policies for Multi-stage Adaptive Optimization

In this paper, we propose a new tractable framework for dealing with multi-stage decision problems affected by uncertainty, applicable to robust optimization and stochastic programming. We introduce a hierarchy of polynomial disturbance-feedback control policies, and show how these can be computed by solving a single semidefinite programming problem. The approach yields a hierarchy parameterized by … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

Interior Proximal Algorithm with Variable Metric for Second-Order Cone Programming: Applications to Structural Optimization and Support Vector Machines

In this work, we propose an inexact interior proximal type algorithm for solving convex second-order cone programs. This kind of problems consists of minimizing a convex function (possibly nonsmooth) over the intersection of an affine linear space with the Cartesian product of second-order cones. The proposed algorithm uses a distance variable metric, which is induced … Read more

Covariance regularization in inverse space

This paper proposes to apply Gaussian graphical models to estimate the large-scale normal distribution in the context of data assimilation from a relatively small number of data from the satellite. Data assimilation is a field which fits simulation models to observation data developed mainly in meteorology and oceanography. The optimization problem tends to be huge … Read more

Graph Realizations Associated with Minimizing the Maximum Eigenvalue of the Laplacian

In analogy to the absolute algebraic connectivity of Fiedler, we study the problem of minimizing the maximum eigenvalue of the Laplacian of a graph by redistributing the edge weights. Via semidefinite duality this leads to a graph realization problem in which nodes should be placed as close as possible to the origin while adjacent nodes … Read more