Optimizing a Polyhedral-Semidefinite Relaxation of Completely Positive Programs

It has recently been shown (Burer, 2006) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs (CPPs), i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are necessarily NP-hard. A basic tractable relaxation … Read more

Semidefinite Programming Approaches to Distance Geometry Problems

Given a subset of all the pair-wise distances between a set of points in a fixed dimension, and possibly the positions of few of the points (called anchors), can we estimate the (relative) positions of all the unknown points (in the given dimension) accurately? This problem is known as the Euclidean Distance Geometry or Graph … Read more

Full Nesterov-Todd Step Interior-Point Methods for Symmetric Optimization

Some Jordan algebras were proved more than a decade ago to be an indispensable tool in the unified study of interior-point methods. By using it, we generalize the infeasible interior-point method for linear optimization of Roos [SIAM J. Optim., 16(4):1110–1136 (electronic), 2006] to symmetric optimization. This unifies the analysis for linear, second-order cone and semidefinite … Read more

Counter Example to A Conjecture on Infeasible Interior-Point Methods

Based on extensive computational evidence (hundreds of thousands of randomly generated problems) the second author conjectured that $\bar{\kappa}(\zeta)=1$, which is a factor of $\sqrt{2n}$ better than that has been proved, and which would yield an $O(\sqrt{n})$ iteration full-Newton step infeasible interior-point algorithm. In this paper we present an example showing that $\bar{\kappa}(\zeta)$ is in the … Read more

A full-Newton step infeasible interior-point algorithm for linear programming based on a kernel function

This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming, which is an extension of the work of Roos (SIAM J. Optim., 16(4):1110–1136, 2006). We introduce a kernel function in the algorithm. For $p\in[0,1)$, the polynomial complexity can be proved and the result coincides with the best result for infeasible interior-point methods, … Read more

A Cutting Surface Method for Uncertain Linear Programs with Polyhedral Stochastic Dominance Constraints

In this paper we study linear optimization problems with multi-dimensional linear positive second-order stochastic dominance constraints. By using the polyhedral properties of the second- order linear dominance condition we present a cutting-surface algorithm, and show its finite convergence. The cut generation problem is a difference of convex functions (DC) optimization problem. We exploit the polyhedral … Read more

The Rotational Dimension of a Graph

Given a connected graph $G=(N,E)$ with node weights $s\in\R^N_+$ and nonnegative edge lengths, we study the following embedding problem related to an eigenvalue optimization problem over the second smallest eigenvalue of the (scaled) Laplacian of $G$: Find $v_i\in\R^{|N|}$, $i\in N$ so that distances between adjacent nodes do not exceed prescribed edge lengths, the weighted barycenter … Read more

Dynamic Evolution for Risk-Neutral Densities

Option price data is often used to infer risk-neutral densities for future prices of an underlying asset. Given the prices of a set of options on the same underlying asset with different strikes and maturities, we propose a nonparametric approach for estimating the evolution of the risk-neutral density in time. Our method uses bicubic splines … Read more

A globally convergent primal-dual interior-point 3D filter method for nonlinear SDP

This paper proposes a primal-dual interior-point filter method for nonlinear semidefinite programming, which is the first multidimensional (three-dimensional) filter methods for interior-point methods, and of course for constrained optimization. A freshly new definition of filter entries is proposed, which is greatly different from those in all the current filter methods. A mixed norm is used … Read more

Exploiting special structure in semidefinite programming: a survey of theory and applications

Semidefinite Programming (SDP) may be seen as a generalization of Linear Programming (LP). In particular, one may extend interior point algorithms for LP to SDP, but it has proven much more difficult to exploit structure in the SDP data during computation. We survey three types of special structure in SDP data: 1) a common `chordal’ … Read more