Strengthened Existence and Uniqueness Conditions for Search Directions in Semidefinite Programming

Primal-dual interior-point (p-d i-p) methods for Semidefinite Programming (SDP) are generally based on solving a system of matrix equations for a Newton type search direction for a symmetrization of the optimality conditions. These search directions followed the derivation of similar p-d i-p methods for linear programming (LP). Among these, a computationally interesting search direction is … Read more

Limiting behavior of the Alizadeh-Haeberly-Overton weighted paths in semidefinite programming

This paper studies the limiting behavior of weighted infeasible central paths for semidefinite programming obtained from centrality equations of the form $X S + SX = 2 \nu W$, where $W$ is a fixed positive definite matrix and $\nu>0$ is a parameter, under the assumption that the problem has a strictly complementary primal-dual optimal solution. … Read more

Asymptotic behavior of the central path for a special class of degenerate SDP problems

This paper studies the asymptotic behavior of the central path $(X(\nu),S(\nu),y(\nu))$ as $\nu \downarrow 0$ for a class of degenerate semidefinite programming (SDP) problems, namely those that do not have strictly complementary primal-dual optimal solutions and whose “degenerate diagonal blocks” $X_{\cT}(\nu)$ and $S_{\cT}(\nu)$ of the central path are assumed to satisfy $\max\{ \|X_{\cT}(\nu)\|, \|S_{\cT}(\nu)\| \} … Read more

On Semidefinite Programming Relaxations for the Satisfiability Problem

This paper is concerned with the analysis and comparison of semidefinite programming (SDP) relaxations for the satisfiability (SAT) problem. Our presentation is focussed on the special case of 3-SAT, but the ideas presented can in principle be extended to any instance of SAT specified by a set of boolean variables and a propositional formula in … Read more

Error bounds and limiting behavior of weighted paths associated with the SDP map ^{1/2}SX^{1/2}$

This paper studies the limiting behavior of weighted infeasible central paths for semidefinite programming obtained from centrality equations of the form $X^{1/2}S X^{1/2} = \nu W$, where $W$ is a fixed positive definite matrix and $\nu>0$ is a parameter, under the assumption that the problem has a strictly complementary primal-dual optimal solution. It is shown … Read more

Calculation of universal barrier functions for cones generated by Chebyshev systems over finite sets

We explicitly calculate universal barrier functions for cones generated by (weakly) Chebyshev systems over finite sets. We show that universal barrier functions corresponding to Chebyshev systems on intervals are obtained as limits of universal barrier functions of their discretizations. The results are heavily rely upon classical work of M. Krein, A. Nudelman and I.J. Schoenberg … Read more

D.C. Versus Copositive Bounds for Standard QP

The standard quadratic program (QPS) is $\min_{x\in\Delta} x’Qx$, where $\Delta\subset\Re^n$ is the simplex $\Delta=\{ x\ge 0 : \sum_{i=1}^n x_i=1 \}$. QPS can be used to formulate combinatorial problems such as the maximum stable set problem, and also arises in global optimization algorithms for general quadratic programming when the search space is partitioned using simplices. One … Read more

On Conically Ordered Convex Programs

In this paper we study a special class of convex optimization problems called {\em conically ordered convex programs}\/ (COCP), where the feasible region is given as the level set of a vector-valued nonlinear mapping, expressed as a nonnegative combination of convex functions. The nonnegativity of the vectors is defined using a pre-described conic ordering. The … Read more

The Complexity of Self-Regular Proximity Based Infeasible IPMs

Primal-Dual Interior-Point Methods (IPMs) have shown their power in solving large classes of optimization problems. In this paper a self-regular proximity based Infeasible Interior Point Method (IIPM) is proposed for linear optimization problems. First we mention some interesting perties of a specific self-regular proximity function, studied recently by Peng and Terlaky, and use it to … Read more

A predictor-corrector algorithm for linear optimization based on a specific self-regular proximity function

It is well known that the so-called first-order predictor-corrector methods working in a large neighborhood of the central path are among the most efficient interior-point methods (IPMs) for linear optimization (LO) problems. However, the best known iteration complexity of this type of methods is $O\br{n \log\frac{(x^0)^Ts^0}{\varepsilon}}$. It is of interests to investigate whether the complexity … Read more