Analyticity of the central path at the boundary point in semidefinite programming

In this paper we study the limiting behavior of the central path for semidefinite programming. We show that the central path is an analytic function of the barrier parameter even at the limit point, provided that the semidefinite program has a strictly complementary solution. A consequence of this property is that the derivatives – of … Read more

Self-scaled barriers for irreducible symmetric cones

Self-scaled barrier functions are fundamental objects in the theory of interior-point methods for linear optimization over symmetric cones, of which linear and semidefinite programming are special cases. We are classifying all self-scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with a decomposition … Read more

Lagrangian dual interior-point methods for semidefinite programs

This paper proposes a new predictor-corrector interior-point method for a class of semidefinite programs, which numerically traces the central trajectory in a space of Lagrange multipliers. The distinguished features of the method are full use of the BFGS quasi-Newton method in the corrector procedure and an application of the conjugate gradient method with an effective … Read more

Implementation Issues in CSDP

CSDP is a software package that implements the XZ primal–dual interior point method for semidefinite programming. In this method there are a number of computationally intensive steps including the construction of the Schur complement matrix $O$, the factorization of $O$, multiplications of matrices of size $n$ and Cholesky factorizations of matrices of size $n$. Profiling … Read more

Self-scaled barrier functions on symmetric cones and their classification

Self-scaled barrier functions on self-scaled cones were introduced through a set of axioms in 1994 by Y.E. Nesterov and M.J. Todd as a tool for the construction of long-step interior point algorithms. This paper provides firm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains … Read more

A Nonlinear Programming Algorithm for Solving Semidefinite Programs via Low-rank Factorization

In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm’s distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X = RR^T. The rank of the factorization, i.e., … Read more

A conic formulation for hBcnorm optimization

In this paper, we formulate the $l_p$-norm optimization problem as a conic optimization problem, derive its standard duality properties and show it can be solved in polynomial time. We first define an ad hoc closed convex cone, study its properties and derive its dual. This allows us to express the standard $l_p$-norm optimization primal problem … Read more

Exploiting Sparsity in Semidefinite Programming via Matrix Completion II: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied … Read more

Proving strong duality for geometric optimization using a conic formulation

Geometric optimization is an important class of problems that has many applications, especially in engineering design. In this article, we provide new simplified proofs for the well-known associated duality theory, using conic optimization. After introducing suitable convex cones and studying their properties, we model geometric optimization problems with a conic formulation, which allows us to … Read more

Minimum Risk Arbitrage with Risky Financial Contracts

For a set of financial securities specified by their expected returns and variance/covariances we propose the concept of minimum risk arbitrage, characterize conditions under which such opportunities may exist. We use conic duality and convex analysis to derive these characterizations. For practical computation a decidability result on the existence of an arbitrage opportunity is derived. … Read more