Kronecker Product Constraints for Semidefinite Optimization

We consider semidefinite optimization problems that include constraints that G(x) and H(x) are positive semidefinite (PSD), where the components of the symmetric matrices G(x) and H(x) are affine functions of an n-vector x. In such a case we obtain a new constraint that a matrix K(x,X) is PSD, where the components of K(x,X) are affine … Read more

Intrinsic Representation of Tangent Vectors and Vector transport on Matrix Manifolds

In Riemannian optimization problems, commonly encountered manifolds are $d$-dimensional matrix manifolds whose tangent spaces can be represented by $d$-dimensional linear subspaces of a $w$-dimensional Euclidean space, where $w > d$. Therefore, representing tangent vectors by $w$-dimensional vectors has been commonly used in practice. However, using $w$-dimensional vectors may be the most natural but may not … Read more

Solving PhaseLift by low-rank Riemannian optimization methods for complex semidefinite constraints

A framework, PhaseLift, was recently proposed to solve the phase retrieval problem. In this framework, the problem is solved by optimizing a cost function over the set of complex Hermitian positive semidefinite matrices. This approach to phase retrieval motivates a more general consideration of optimizing cost functions on semidefinite Hermitian matrices where the desired minimizers … Read more

Chebyshev Inequalities for Products of Random Variables

We derive sharp probability bounds on the tails of a product of symmetric non-negative random variables using only information about their first two moments. If the covariance matrix of the random variables is known exactly, these bounds can be computed numerically using semidefinite programming. If only an upper bound on the covariance matrix is available, … Read more

Matrices with high completely positive semidefinite rank

A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M, and it is an open question whether there exists an upper bound on this number as a function of … Read more

A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem

The bounded degree sum-of-squares (BSOS) hierarchy of Lasserre, Toh, and Yang [EURO J. Comput. Optim., 2015] constructs lower bounds for a general polynomial optimization problem with compact feasible set, by solving a sequence of semi-definite programming (SDP) problems. Lasserre, Toh, and Yang prove that these lower bounds converge to the optimal value of the original … Read more

Completely positive semidefinite rank

An $n\times n$ matrix $X$ is called completely positive semidefinite (cpsd) if there exist $d\times d$ Hermitian positive semidefinite {matrices} $\{P_i\}_{i=1}^n$ (for some $d\ge 1$) such that $X_{ij}= {\rm Tr}(P_iP_j),$ for all $i,j \in \{ 1, \ldots, n \}$. The cpsd-rank of a cpsd matrix is the smallest $d\ge 1$ for which such a representation … Read more

Implementation of Interior-point Methods for LP based on Krylov Subspace Iterative Solvers with Inner-iteration Preconditioning

We apply novel inner-iteration preconditioned Krylov subspace methods to the interior-point algorithm for linear programming (LP). Inner-iteration preconditioners recently proposed by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear equations solved in the final phase of interior-point iterations. The employed Krylov subspace methods do not suffer from rank-deficiency and therefore no … Read more

On the Grassmann condition number

We give new insight into the Grassmann condition of the conic feasibility problem \[ x \in L \cap K \setminus\{0\}. \] Here $K\subseteq V$ is a regular convex cone and $L\subseteq V$ is a linear subspace of the finite dimensional Euclidean vector space $V$. The Grassmann condition of this problem is the reciprocal of the … Read more

A Framework for Solving Mixed-Integer Semidefinite Programs

Mixed-integer semidefinite programs arise in many applications and several problem-specific solution approaches have been studied recently. In this paper, we investigate a generic branch-and-bound framework for solving such problems. We first show that strict duality of the semidefinite relaxations is inherited to the subproblems. Then solver components like dual fixing, branching rules, and primal heuristics … Read more