Inverse optimal control with polynomial optimization

In the context of optimal control, we consider the inverse problem of Lagrangian identification given system dynamics and optimal trajectories. Many of its theoretical and practical aspects are still open. Potential applications are very broad as a reliable solution to the problem would provide a powerful modeling tool in many areas of experimental science. We … Read more

Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations

The current bottleneck of globally solving mixed-integer (nonconvex) quadratically constrained problem (MIQCP) is still to construct strong but computationally cheap convex relaxations, especially when dense quadratic functions are present. We pro- pose a cutting surface procedure based on multiple diagonal perturbations to derive strong convex quadratic relaxations for nonconvex quadratic problem with separable constraints. Our … Read more

CBLIB 2014: A benchmark library for conic mixed-integer and continuous optimization

The Conic Benchmark Library (CBLIB 2014) is a collection of more than a hundred conic optimization instances under a free and open license policy. It is the first extensive benchmark library for the advancing field of conic mixed-integer and continuous optimization, which is already supported by all major commercial solvers and spans a wide range … Read more

Semidefinite Programming Reformulation of Completely Positive Programs: Range Estimation and Best-Worst Choice Modeling

We show that the worst case moment bound on the expected optimal value of a mixed integer linear program with a random objective c is closely related to the complexity of characterizing the convex hull of the points CH{(1 x) (1 x)’: x \in X} where X is the feasible region. In fact, we can … Read more

A search for quantum coin-flipping protocols using optimization techniques

Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in … Read more

A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem

This paper deals with the Close-Enough Traveling Salesman Problem (CETSP). In the CETSP, rather than visiting the vertex (customer) itself, the salesman must visit a specific region containing such vertex. To solve this problem, we propose a simple yet effective exact algorithm, based on Branch-and-Bound and Second Order Cone Programming (SOCP). The proposed algorithm was … Read more

Polyhedral Approximation of Ellipsoidal Uncertainty Sets via Extended Formulations – a computational case study –

Robust optimization is an important technique to immunize optimization problems against data uncertainty. In the case of a linear program and an ellipsoidal uncertainty set, the robust counterpart turns into a second-order cone program. In this work, we investigate the efficiency of linearizing the second-order cone constraints of the latter. This is done using the … Read more

An improved Kalai-Kleitman bound for the diameter of a polyhedron

Kalai and Kleitman established the bound $n^{\log(d) + 2}$ for the diameter of a $d$-dimensional polyhedron with $n$ facets. Here we improve the bound slightly to $(n-d)^{\log(d)}$. Citation School of Operations Research and Information Engineering, Cornell University, Ithaca NY, USA, February 2014 Article Download View An improved Kalai-Kleitman bound for the diameter of a polyhedron

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

On QPCCs, QCQPs and Completely Positive Programs

This paper studies several classes of nonconvex optimization problems defined over convex cones, establishing connections between them and demonstrating that they can be equivalently formulated as convex completely positive programs. The problems being studied include: a quadratically constrained quadratic program (QCQP), a quadratic program with complementarity constraints (QPCC), and rank constrained semidefinite programs. Our results … Read more