A Subgradient Projection Method with Outer Approximation for Solving Semidefinite Programming Problems

We explore the combination of subgradient projection with outer approximation to solve semidefinite programming problems. We compare several ways to construct outer approximations using the problem structure. The resulting approach enjoys the strengths of both subgradient projection and outer approximation methods. Preliminary computational results on the semidefinite programming relaxations of graph partitioning and max-cut show … Read more

Projection onto hyperbolicity cones and beyond: a dual Frank-Wolfe approach

We discuss the problem of projecting a point onto an arbitrary hyperbolicity cone from both theoretical and numerical perspectives. While hyperbolicity cones are furnished with a generalization of the notion of eigenvalues, obtaining closed form expressions for the projection operator as in the case of semidefinite matrices is an elusive endeavour. To address that we … Read more

The Role of Level-Set Geometry on the Performance of PDHG for Conic Linear Optimization

We consider solving huge-scale instances of (convex) conic linear optimization problems, at the scale where matrix-factorization-free methods are attractive or necessary. The restarted primal-dual hybrid gradient method (rPDHG) — with heuristic enhancements and GPU implementation — has been very successful in solving huge-scale linear programming (LP) problems; however its application to more general conic convex … Read more

Tighter yet more tractable relaxations and nontrivial instance generation for sparse standard quadratic optimization

The Standard Quadratic optimization Problem (StQP), arguably the simplest among all classes of NP-hard optimization problems, consists of extremizing a quadratic form (the simplest nonlinear polynomial) over the standard simplex (the simplest polytope/compact feasible set). As a problem class, StQPs may be nonconvex with an exponential number of inefficient local solutions. StQPs arise in a … Read more

Exploiting cone approximations in an augmented Lagrangian method for conic optimization

We propose an algorithm for general nonlinear conic programming which does not require the knowledge of the full cone, but rather a simpler, more tractable, approximation of it. We prove that the algorithm satisfies a strong global convergence property in the sense that it generates a strong sequential optimality condition. In particular, a KKT point … Read more

On the integrality gap of the Complete Metric Steiner Tree Problem via a novel formulation

In this work, we study the metric Steiner Tree problem on graphs focusing on computing lower bounds for the integrality gap of the bi-directed cut (BCR) formulation and introducing a novel formulation, the Complete Metric (CM) model, specifically designed to address the weakness of the BCR formulation on metric instances. A key contribution of our … Read more

Counterfactual Explanations for Linear Optimization

The concept of counterfactual explanations (CE) has emerged as one of the important concepts to understand the inner workings of complex AI systems. In this paper, we translate the idea of CEs to linear optimization and propose, motivate, and analyze three different types of CEs: strong, weak, and relative. While deriving strong and weak CEs … Read more

Sensitivity Analysis in Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is a well-known classical method for solving huge linear optimization problems with a block-angular structure. The most computationally expensive process in the method is pricing: solving block subproblems for a dual variable to produce new columns. Therefore, when we want to solve a slightly perturbated problem in which the block-angular structure is preserved … Read more

Exploiting Sign Symmetries in Minimizing Sums of Rational Functions

This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialgebraic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual SOS aspect offers two benefits: 1) … Read more