A Bound for the Number of Different Basic Solutions Generated by the Simplex Method

In this short paper, we give an upper bound for the number of different basic feasible solutions generated by the simplex method for linear programming problems having optimal solutions. The bound is polynomial of the number of constraints, the number of variables, and the ratio between the minimum and the maximum values of all the … Read more

Klee-Minty’s LP and Upper Bounds for Dantzig’s Simplex Method

Kitahara and Mizuno (2010) get two upper bounds for the number of different basic feasible solutions generated by Dantzig’s simplex method. The size of the bounds highly depends on the ratio between the maximum and minimum values of all the positive elements of basic feasible solutions. In this paper, we show some relations between the … Read more

Target-following framework for symmetric cone programming

We extend the target map, together with the weighted barriers and the notions of weighted analytic centers, from linear programming to general convex conic programming. This extension is obtained from a novel geometrical perspective of the weighted barriers, that views a weighted barrier as a weighted sum of barriers for a strictly decreasing sequence of … Read more

The central curve in linear programming

The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal … Read more

The Convex Geometry of Linear Inverse Problems

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees … Read more

New approximations for the cone of copositive matrices and its dual

We provide convergent hierarchies for the cone C of copositive matrices and its dual, the cone of completely positive matrices. In both cases the corresponding hierarchy consists of nested spectrahedra and provide outer (resp. inner) approximations for C (resp. for its dual), thus complementing previous inner (resp. outer) approximations for C (for its dual). In … Read more

On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints

The well-known result stating that any non-convex quadratic problem over the nonnegative orthant with some additional linear and binary constraints can be rewritten as linear problem over the cone of completely positive matrices (Burer, 2009) is generalized by replacing the nonnegative orthant with an arbitrary closed convex cone. This set-semidefinite representation result implies new semidefinite … Read more

On Computation of Performance Bounds of Optimal Index Assignment

Channel-optimized index assignment of source codewords is arguably the simplest way of improving transmission error resilience, while keeping the source and/or channel codes intact. But optimal design of index assignment is an in- stance of quadratic assignment problem (QAP), one of the hardest optimization problems in the NP-complete class. In this paper we make a … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming

In this paper, ellipse is used to approximate the central path of the linear programming. An interior-point algorithm is devised to search the optimizers along the ellipse. The algorithm is proved to be polynomial with the complexity bound $O(n^{\frac{1}{2}}\log(1/\epsilon))$. Numerical test is conducted for problems in Netlib. For most tested Netlib problems, the result shows … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Convex Quadratic Programming

Arc-search is developed for linear programming in \cite{yang09, yang10}. The algorithms search for optimizers along an ellipse that are approximations of the central path. In this paper, the arc-search method is applied to primal-dual path-following interior-point method for convex quadratic programming. A simple algorithm with iteration complexity $O(\sqrt{n}\log(1/\epsilon))$ is devised. Several improvements on the simple … Read more