A high-performance software package for semidefinite programs: SDPA 7

The SDPA (SemiDefinite Programming Algorithm) Project launched in 1995 has been known to provide high-performance packages for solving large-scale Semidefinite Programs (SDPs). SDPA Ver. 6 solves efficiently large-scale dense SDPs, however, it required much computation time compared with other software packages, especially when the Schur complement matrix is sparse. SDPA Ver. 7 is now completely … Read more

Superlinear Convergence of Infeasible Predictor-Corrector Path-Following Interior Point Algorithm for SDLCP using the HKM Direction

Interior point method (IPM) defines a search direction at each interior point of a region. These search directions form a direction field which in turn gives rise to a system of ordinary differential equations (ODEs). The solutions of the system of ODEs can be viewed as underlying paths in the interior of the region. In … Read more

Copositivity detection by difference-of-convex decomposition and omega-subdivision

We present three new copositivity tests based upon difference-of-convex (d.c.) decompositions, and combine them to a branch-and-bound algorithm of $\omega$-subdivision type. The tests employ LP or convex QP techniques, but also can be used heuristically using appropriate test points. We also discuss the selection of efficient d.c.~decompositions and propose some preprocessing ideas based on the … Read more

A joint+marginal approach to parametric polynomial optimization

Given a compact parameter set $Y\subset R^p$, we consider polynomial optimization problems $(P_\y$) on $R^n$ whose description depends on the parameter $y\in Y$. We assume that one can compute all moments of some probability measure $\varphi$ on $Y$, absolutely continuous with respect to the Lebesgue measure (e.g. $Y$ is a box or a simplex and … Read more

A Pure L1-norm Principal Component Analysis

The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes … Read more

On Duality Gap in Binary Quadratic Programming

We present in this paper new results on the duality gap between the binary quadratic optimization problem and its Lagrangian dual or semidefinite programming relaxation. We first derive a necessary and sufficient condition for the zero duality gap and discuss its relationship with the polynomial solvability of the primal problem. We then characterize the zeroness … Read more

On the Effectiveness of Projection Methods for Convex Feasibility

The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of … Read more

Binary positive semidefinite matrices and associated integer polytopes

We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature — the cut, boolean quadric, multicut and clique partitioning polytopes — are faces of binary … Read more

Extension of the semidefinite characterization of sum of squares functional systems to algebraic structures

We extend Nesterov’s semidefinite programming (SDP) characterization of the cone of functions that can be expressed as sums of squares (SOS) of functions in finite dimensional linear functional spaces. Our extension is to algebraic systems that are endowed with a binary operation which map two elements of a finite dimensional vector space to another vector … Read more

Multidisciplinary Free Material Optimization

We present a mathematical framework for the so-called multidisciplinary free material optimization (MDFMO) problems, a branch of structural optimization in which the full material tensor is considered as a design variable. We extend the original problem statement by a class of generic constraints depending either on the design or on the state variables. Among the … Read more