A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics

Historically, scalability has been a major challenge to the successful application of semidefinite programming in fields such as machine learning, control, and robotics. In this paper, we survey recent approaches for addressing this challenge including (i) approaches for exploiting structure (e.g., sparsity and symmetry) in a problem, (ii) approaches that produce low-rank approximate solutions to … Read more

Error Bounds and Singularity Degree in Semidefinite Programming

In semidefinite programming a proposed optimal solution may be quite poor in spite of having sufficiently small residual in the optimality conditions. This issue may be framed in terms of the discrepancy between forward error (the unmeasurable `true error’) and backward error (the measurable violation of optimality conditions). In his seminal work, Sturm provided an … Read more

A convex relaxation to compute the nearest structured rank deficient matrix

Given an affine space of matrices L and a matrix \theta in L, consider the problem of finding the closest rank deficient matrix to \theta on L with respect to the Frobenius norm. This is a nonconvex problem with several applications in estimation problems. We introduce a novel semidefinite programming (SDP) relaxation, and we show … Read more

Burer-Monteiro guarantees for general semidefinite programs

Consider a semidefinite program (SDP) involving an $n\times n$ positive semidefinite matrix $X$. The Burer-Monteiro method consists in solving a nonconvex program in $Y$, where $Y$ is an $n\times p$ matrix such that $X = Y Y^T$. Despite nonconvexity, Boumal et al. showed that the method provably solves generic equality-constrained SDP’s when $p > \sqrt{2m}$, … Read more

Lower Bounds for the Bandwidth Problem

The Bandwidth Problem asks for a simultaneous permutation of the rows and columns of the adjacency matrix of a graph such that all nonzero entries are as close as possible to the main diagonal. This work focuses on investigating novel approaches to obtain lower bounds for the bandwidth problem. In particular, we use vertex partitions … Read more

Noisy Euclidean Distance Matrix Completion with a Single Missing Node

We present several solution techniques for the noisy single source localization problem, i.e.,~the Euclidean distance matrix completion problem with a single missing node to locate under noisy data. For the case that the sensor locations are fixed, we show that this problem is implicitly convex, and we provide a purification algorithm along with the SDP … Read more

Tractable semi-algebraic approximation using Christoffel-Darboux kernel

We provide a new method to approximate a (possibly discontinuous) function using Christoffel-Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more

CONICOPF: Conic relaxations for AC optimal power flow computations

Computational speed and global optimality are key needs for practical algorithms for the optimal power flow problem. Two convex relaxations offer a favorable trade-off between the standard second-order cone and the standard semidefinite relaxations for large-scale meshed networks in terms of optimality gap and computation time: the tight-and-cheap relaxation (TCR) and the quadratic convex relaxation … Read more

Doubly nonnegative relaxations are equivalent to completely positive reformulations of quadratic optimization problems with block-clique graph structures

We study the equivalence among a nonconvex QOP, its CPP and DNN relaxations under the assumption that the aggregated and correlative sparsity of the data matrices of the CPP relaxation is represented by a block-clique graph $G$. By exploiting the correlative sparsity, we decompose the CPP relaxation problem into a clique-tree structured family of smaller … Read more