Noisy Euclidean Distance Matrix Completion with a Single Missing Node

We present several solution techniques for the noisy single source localization problem, i.e.,~the Euclidean distance matrix completion problem with a single missing node to locate under noisy data. For the case that the sensor locations are fixed, we show that this problem is implicitly convex, and we provide a purification algorithm along with the SDP … Read more

Tractable semi-algebraic approximation using Christoffel-Darboux kernel

We provide a new method to approximate a (possibly discontinuous) function using Christoffel-Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more

CONICOPF: Conic relaxations for AC optimal power flow computations

Computational speed and global optimality are key needs for practical algorithms for the optimal power flow problem. Two convex relaxations offer a favorable trade-off between the standard second-order cone and the standard semidefinite relaxations for large-scale meshed networks in terms of optimality gap and computation time: the tight-and-cheap relaxation (TCR) and the quadratic convex relaxation … Read more

Doubly nonnegative relaxations are equivalent to completely positive reformulations of quadratic optimization problems with block-clique graph structures

We study the equivalence among a nonconvex QOP, its CPP and DNN relaxations under the assumption that the aggregated and correlative sparsity of the data matrices of the CPP relaxation is represented by a block-clique graph $G$. By exploiting the correlative sparsity, we decompose the CPP relaxation problem into a clique-tree structured family of smaller … Read more

Interior Point Method on Semi-definite Linear Complementarity Problems using the Nesterov-Todd (NT) Search Direction: Polynomial Complexity and Local Convergence

We consider in this paper an infeasible predictor-corrector primal-dual path following interior point algorithm using the Nesterov-Todd (NT) search direction to solve semi-definite linear complementarity problems. Global convergence and polynomial iteration complexity of the algorithm are established. Two sufficient conditions are also given for superlinear convergence of iterates generated by the algorithm. Preliminary numerical results … Read more

Exploiting Sparsity for Semi-Algebraic Set Volume Computation

We provide a systematic deterministic numerical scheme to approximate the volume (i.e. the Lebesgue measure) of a basic semi-algebraic set whose description follows a sparsity pattern. As in previous works (without sparsity), the underlying strategy is to consider an infinite-dimensional linear program on measures whose optimal value is the volume of the set. This is … Read more

Rank-one Convexification for Sparse Regression

Sparse regression models are increasingly prevalent due to their ease of interpretability and superior out-of-sample performance. However, the exact model of sparse regression with an L0 constraint restricting the support of the estimators is a challenging non-convex optimization problem. In this paper, we derive new strong convex relaxations for sparse regression. These relaxations are based … Read more

On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems

We consider the semi-infinite system of polynomial inequalities of the form \[ \mathbf{K}:=\{x\in\mathbb{R}^m\mid p(x,y)\ge 0,\ \ \forall y\in S\subseteq\mathbb{R}^n\}, \] where $p(X,Y)$ is a real polynomial in the variables $X$ and the parameters $Y$, the index set $S$ is a basic semialgebraic set in $\mathbb{R}^n$, $-p(X,y)$ is convex in $X$ for every $y\in S$. We … Read more

A dual spectral projected gradient method for log-determinant semidefinite problems

We extend the result on the spectral projected gradient method by Birgin et al in 2000 to a log-determinant semidefinite problem (SDP) with linear constraints and propose a spectral projected gradient method for the dual problem. Our method is based on alternate projections on the intersection of two convex sets, which first projects onto the … Read more