Exact SDP Relaxations with Truncated Moment Matrix for Binary Polynomial Optimization Problems

For binary polynomial optimization problems (POPs) of degree $d$ with $n$ variables, we prove that the $\lceil(n+d-1)/2\rceil$th semidefinite (SDP) relaxation in Lasserre’s hierarchy of the SDP relaxations provides the exact optimal value. If binary POPs involve only even-degree monomials, we show that it can be further reduced to $\lceil(n+d-2)/2\rceil$. This bound on the relaxation order … Read more

Quadratic Programs with Hollows

Let $\F$ be a quadratically constrained, possibly nonconvex, bounded set, and let $\E_1, \ldots, \E_l$ denote ellipsoids contained in $\F$ with non-intersecting interiors. We prove that minimizing an arbitrary quadratic $q(\cdot)$ over $\G := \F \setminus \cup_{k=1}^\ell \myint(\E_k)$ is no more difficult than minimizing $q(\cdot)$ over $\F$ in the following sense: if a given semidefinite-programming … Read more

Semi-infinite programming using high-degree polynomial interpolants and semidefinite programming

In a common formulation of semi-infinite programs, the infinite constraint set is a requirement that a function parametrized by the decision variables is nonnegative over an interval. If this function is sufficiently closely approximable by a polynomial or a rational function, then the semi-infinite program can be reformulated as an equivalent semidefinite program. Solving this … Read more

Optimality conditions for nonlinear semidefinite programming via squared slack variables

In this work, we derive second-order optimality conditions for nonlinear semidefinite programming (NSDP) problems, by reformulating it as an ordinary nonlinear programming problem using squared slack variables. We first consider the correspondence between Karush-Kuhn-Tucker points and regularity conditions for the general NSDP and its reformulation via slack variables. Then, we obtain a pair of “no-gap” … Read more

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces new valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the litterature. Together with model intersections and bound tightening, the new linear cuts … Read more

On the Lovasz Theta Function and Some Variants

The Lovasz theta function of a graph is a well-known upper bound on the stability number. It can be computed efficiently by solving a semidefinite program (SDP). Actually, one can solve either of two SDPs, one due to Lovasz and the other to Groetschel et al. The former SDP is often thought to be preferable … Read more

Polynomial SDP Cuts for Optimal Power Flow

The use of convex relaxations has lately gained considerable interest in Power Systems. These relaxations play a major role in providing quality guarantees for non-convex optimization problems. For the Optimal Power Flow (OPF) prob- lem, the semidefinite programming (SDP) relaxation is known to produce tight lower bounds. Unfortunately, SDP solvers still suffer from a lack … Read more

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems. The chordal completion based maximal clique decomposition is the preferred approach for exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is primal degenerate when the SDP has a low rank solution. We also derive conditions under … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more

Simple Approximations of Semialgebraic Sets and their Applications to Control

Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes … Read more