Semidefinite programming vs LP relaxations for polynomial programming

We consider the global minimization of a multivariate polynomial on a semi-algebraic set \Omega defined with polynomial inequalities. We then compare two hierarchies of relaxations, namely, LP-relaxations based on products of the original constraints, in the spirit of the RLT procedure of Sherali and Adams and recent SDP (semi definite programming) relaxations introduced by the … Read more

An explicit equivalent positive semidefinite program for nonlinear 0-1 programs

We consider the general nonlinear optimization problem in 0-1 variables and provide an explicit equivalent positive semidefinite program in $2^n-1$ variables. The optimal values of both problems are identical. From every optimal solution of the former one easily find an optimal solution of the latter and conversely, from every solution of the latter one may … Read more

User’s Guide for SeDuMi Interface 1.01

A user-friendly free Matlab package for defining Linear Matrix Inequality (LMI) problems. It acts as an interface for the Self-Dual-Minimisation package SeDuMi developed by Jos F. Sturm. The functionalities of SeDuMi Interface are the following: (1) Declare an LMI problem. Five Matlab functions allow to define completely an LMI problem which can be characterised by … Read more

Products of positive forms, linear matrix inequalities, and Hilbert 17-th problem for ternary forms

A form p on R^n (homogeneous n-variate polynomial) is called positive semidefinite (psd) if it is nonnegative on R^n. In other words, the zero vector is a global minimizer of p in this case. The famous 17th conjecture of Hilbert (later proven by Artin) is that a form p is psd if and only if … Read more

A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations

The recent spectral bundle method allows to compute, within reasonable time, approximate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We show that it also generates a sequence of primal approximations that converge to a primal optimal solution. Separating with respect to these approximations gives rise to a cutting plane algorithm that converges … Read more

Solving a Class of Semidefinite Programs via Nonlinear Programming

In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefinite programming (SDP) problems into nonlinear optimization problems. For those problems of interest, the transformation replaces matrix-valued constraints by vector-valued ones, hence reducing the number of constraints by an order of magnitude. The class of transformable problems includes instances of … Read more

Simple Efficient Solutions for Semidefinite Programming

This paper provides a simple approach for solving a semidefinite program, SDP\@. As is common with many other approaches, we apply a primal-dual method that uses the perturbed optimality equations for SDP, $F_\mu(X,y,Z)=0$, where $X,Z$ are $n \times n$ symmetric matrices and $y \in \Re^n$. However, we look at this as an overdetermined system of … Read more

Geometry of Semidefinite Max-Cut Relaxations via Ranks

Semidefinite programming (SDP) relaxations are proving to be a powerful tool for finding tight bounds for hard discrete optimization problems. This is especially true for one of the easier NP-hard problems, the Max-Cut problem (MC). The well-known SDP relaxation for Max-Cut, here denoted SDP1, can be derived by a first lifting into matrix space and … Read more

Improved complexity for maximum volume inscribed ellipsoids

Let $\Pcal=\{x | Ax\le b\}$, where $A$ is an $m\times n$ matrix. We assume that $\Pcal$ contains a ball of radius one centered at the origin, and is contained in a ball of radius $R$ centered at the origin. We consider the problem of approximating the maximum volume ellipsoid inscribed in $\Pcal$. Such ellipsoids have … Read more

An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming

We study the asymptotic behavior of the interior-point bounds arising from the work of Yildirim and Todd on sensitivity analysis in semidefinite programming in comparison with the optimal partition bounds. For perturbations of the right-hand side vector and the cost matrix, we show that the interior-point bounds evaluated on the central path using the Monteiro-Zhang … Read more