The Trust Region Subproblem and Semidefinite Programming

The trust region subproblem (the minimization of a quadratic objective subject to one quadratic constraint and denoted TRS) has many applications in diverse areas, e.g. function minimization, sequential quadratic programming, regularization, ridge regression, and discrete optimization. In particular, it determines the step in trust region algorithms for function minimization. Trust region algorithms are popular for … Read more

A Simplified/Improved HKM Direction for Certain Classes of Semidefinite Programming

Semidefinite Programming (SDP) provides strong bounds for many NP-hard combinatorial problems. Arguably the most popular/efficient search direction for solving SDPs using a primal-dual interior point (p-d i-p) framework is the {\em HKM direction}. This direction is a Newton direction found from the linearization of a symmetrized version of the optimality conditions. For many of the … Read more

Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope

Hierarchies of semidefinite relaxations for $0/1$ polytopes have been constructed by Lasserre (2001a) and by Lov\’asz and Schrijver (1991), permitting to find the cut polytope of a graph on $n$ nodes in $n$ steps. We show that $\left\lceil {n\over 2} \right\rceil$ iterations are needed for finding the cut polytope of the complete graph $K_n$. CitationMathematics … Read more

An Improved Semidefinite Programming Relaxation for the Satisfiability Problem

The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such an instance, the SAT problem asks whether there is a truth assignment to the variables such that … Read more

Limiting behavior of the central path in semidefinite optimization

It was recently shown that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and … Read more

Characterization of the limit point of the central path in semidefinite programming

In linear programming, the central path is known to converge to the analytic center of the set of optimal solutions. Recently, it has been shown that this is not necessarily true for linear semidefinite programming in the absence of strict complementarity. The present paper deals with the formulation of a convex problem whose solution defines … Read more

SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB — User’s Guide

SOSTOOLS is a free MATLAB toolbox for formulating and solving sum of squares (SOS) optimization programs. It uses a simple notation and a flexible and intuitive high-level user interface to specify the SOS programs. Currently these are solved using SeDuMi, a well-known semidefinite programming solver, while SOSTOOLS handles internally all the necessary reformulations and data … Read more

Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices

We build upon the work of Fukuda et al.\ \cite{FuKoMuNa01} and Nakata et al.\ \cite{NaFuFuKoMu01}, in which the theory of partial positive semidefinite matrices has been applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improves an existing algorithm that is based … Read more

PENNON – A Code for Convex Nonlinear and Semidefinite Programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in … Read more

Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations

We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S.~Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of objective quadratic functions and diagonal coefficient matrices … Read more