Spectral properties of Barzilai-Borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order methods. More in detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the steplength in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or … Read more

An accelerated inexact proximal point method for solving nonconvex-concave min-max problems

Abstract This paper presents a quadratic-penalty type method for solving linearly-constrained composite nonconvex-concave min-max problems. The method consists of solving a sequence of penalty subproblems which, due to the min-max structure of the problem, are potentially nonsmooth but can be approximated by smooth composite nonconvex minimization problems. Each of these penalty subproblems is then solved … Read more

Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more

Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation

We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation, and illustrate empirically that the reformulation can … Read more

A Proximal Interior Point Algorithm with Applications to Image Processing

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying … Read more

Stability Analysis for a Class of Sparse Optimization Problems

The sparse optimization problems arise in many areas of science and engineering, such as compressed sensing, image processing, statistical and machine learning. The $\ell_{0}$-minimization problem is one of such optimization problems, which is typically used to deal with signal recovery. The $\ell_{1}$-minimization method is one of the plausible approaches for solving the $\ell_{0}$-minimization problems, and … Read more

Self-Concordance and Matrix Monotonicity with Applications to Quantum Entanglement Problems

Let $V$ be an Euclidean Jordan algebra and $\Omega$ be a cone of invertible squares in $V$. Suppose that $g:\mathbb{R}_{+} \to \mathbb{R}$ is a matrix monotone function on the positive semiaxis which naturally induces a function $\tilde{g}: \Omega \to V$. We show that $-\tilde{g}$ is compatible (in the sense of Nesterov-Nemirovski) with the standard self-concordant … Read more

An Alternating Manifold Proximal Gradient Method for Sparse PCA and Sparse CCA

Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Since non-smoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more

Inertial Block Mirror Descent Method for Non-Convex Non-Smooth Optimization

In this paper, we propose inertial versions of block coordinate descent methods for solving non-convex non-smooth composite optimization problems. We use the general framework of Bregman distance functions to compute the proximal maps. Our method not only allows using two different extrapolation points to evaluate gradients and adding the inertial force, but also takes advantage … Read more