On the non-ergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming

In this paper, we consider the linearly constrained composite convex optimization problem, whose objective is a sum of a smooth function and a possibly nonsmooth function. We propose an inexact augmented Lagrangian (IAL) framework for solving the problem. The stopping criterion used in solving the augmented Lagrangian (AL) subproblem in the proposed IAL framework is … Read more

Cutting Box Strategy: an algorithmic framework for improving metaheuristics for continuous global optimization

In this work, we present a new framework to increase effectiveness of metaheuristics in seeking good solutions for the general nonlinear optimization problem, called Cutting Box Strategy (CBS). CBS is based on progressive reduction of the search space through the use of intelligent multi-starts, where solutions already obtained cannot be revisited by the adopted metaheuristic. … Read more

Discrete flow pooling problems in coal supply chains

The pooling problem is a nonconvex nonlinear programming problem (NLP) with applications in the refining and petrochemical industries, but also the coal mining industry. The problem can be stated as follows: given a set of raw material suppliers (inputs) and qualities of the supplies, find a cost-minimising way of blending these raw materials in intermediate … Read more

Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models

The evaluation complexity of general nonlinear, possibly nonconvex,constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an $\epsilon$-approximate first-order critical point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem’s function and their first $p$ derivatives. This is achieved by using a two-phases algorithm inspired by Cartis, Gould, … Read more

Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programming

In this work we present an algorithm for solving constrained optimization problems that does not make explicit use of the objective function derivatives. The algorithm mixes an inexact restoration framework with filter techniques, where the forbidden regions can be given by the flat or slanting filter rule. Each iteration is decomposed in two independent phases: … Read more

A special case of the generalized pooling problem arising in the mining industry

Iron ore and coal are substantial contributors to Australia’s export economy. Both are blended products that are made-to-order according to customers’ desired product qualities. Mining companies have a great interest in meeting these target qualities since deviations generally result in contractually agreed penalties. This paper studies a variation of the generalized pooling problem (GPP) arising … Read more

Penalty PALM Method for Cardinality Constrained Portfolio Selection Problems

For reducing costs of market frictions, investors need to build a small-scale portfolio by solving a cardinality constrained portfolio selection problem which is NP-hard in general and not easy to be solved eciently for a large-scale problem. In this paper, we propose a penalty proximal alternat- ing linearized minimization method for the large-scale problems in … Read more

Nonlinear Programming Strategies on High-Performance Computers

We discuss structured nonlinear programming problems arising in control applications, and we review software and hardware capabilities that enable the efficient exploitation of such structures. We focus on linear algebra parallelization strategies and discuss how these interact and influence high-level algorithmic design elements required to enforce global convergence and deal with negative curvature in a … Read more

New multi-commodity flow formulations for the pooling problem

The pooling problem is a nonconvex nonlinear programming problem with numerous applications. The nonlinearities of the problem arise from bilinear constraints that capture the blending of raw materials. Bilinear constraints are well-studied and significant progress has been made in solving large instances of the pooling problem to global optimality. This is due in no small … Read more

Generic properties for semialgebraic programs

In this paper we study genericity for the following parameterized class of nonlinear programs: \begin{eqnarray*} \textrm{minimize } f_u(x) := f(x) – \langle u, x \rangle \quad \textrm{subject to } \quad x \in S, \end{eqnarray*} where $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a closed semialgebraic set, which is … Read more