On the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems

It is well known that the conjugate gradient method and a quasi-Newton method, using any well-defined update matrix from the one-parameter Broyden family of updates, produce identical iterates on a quadratic problem with positive-definite Hessian. This equivalence does not hold for any quasi-Newton method. We define precisely the conditions on the update matrix in the … Read more

Strong local convergence properties of adaptive regularized methods for nonlinear least-squares

This paper studies adaptive regularized methods for nonlinear least-squares problems where the model of the objective function used at each iteration is either the Euclidean residual regularized by a quadratic term or the Gauss-Newton model regularized by a cubic term. For suitable choices of the regularization parameter the role of the regularization term is to … Read more

Abstract Newtonian Frameworks and Their Applications

We unify and extend some Newtonian iterative frameworks developed earlier in the literature, which results in a collection of convenient tools for local convergence analysis of various algorithms under various sets of assumptions including strong metric regularity, semistability, or upper-Lipschizt stability, the latter allowing for nonisolated solutions. These abstract schemes are further applied for deriving … Read more

Attraction of Newton method to critical Lagrange multipliers: fully quadratic case

All previously known results concerned with attraction of Newton-type iterations for optimality systems to critical Lagrange multipliers were a posteriori by nature: they were showing that in case of convergence, the dual limit is in a sense unlikely to be noncritical. This paper suggests the first a priori result in this direction, showing that critical … Read more

Quadratic Outer Approximation for Convex Integer Programming

We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same … Read more

Approximate-KKT stopping criterion when Lagrange multipliers are not available

In this paper we investigate how to efficiently apply Approximate-Karush-Kuhn-Tucker (AKKT) proximity measures as stopping criteria for optimization algorithms that do not generate approximations to Lagrange multipliers, in particular, Genetic Algorithms. We prove that for a wide range of constrained optimization problems the KKT error measurement tends to zero. We also develop a simple model … Read more

A Framework of Constraint Preserving Update Schemes for Optimization on Stiefel Manifold

This paper considers optimization problems on the Stiefel manifold $X^TX=I_p$, where $X\in \mathbb{R}^{n \times p}$ is the variable and $I_p$ is the $p$-by-$p$ identity matrix. A framework of constraint preserving update schemes is proposed by decomposing each feasible point into the range space of $X$ and the null space of $X^T$. While this general framework … Read more

An Adaptive Augmented Lagrangian Method for Large-Scale Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augmented … Read more

MSS: MATLAB software for L-BFGS trust-region subproblems for large-scale optimization

A MATLAB implementation of the More’-Sorensen sequential (MSS) method is presented. The MSS method computes the minimizer of a quadratic function defined by a limited-memory BFGS matrix subject to a two-norm trust-region constraint. This solver is an adaptation of the More’-Sorensen direct method into an L-BFGS setting for large-scale optimization. The MSS method makes use … Read more

Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements … Read more