Global Optimization via Slack Variables

This paper presents a method for finding global optima to constrained nonlinear programs via slack variables. The method only applies if all functions involved are of class C1 but without any further qualification on the types of constraints allowed; it proceeds by reformulating the given program into a bi-objective program that is then solved for … Read more

A Lagrangean Decomposition Approach for Robust Combinatorial Optimization

We address robust versions of combinatorial optimization problems, specializing on the discrete scenario case and the uncorrelated ellipsoidal uncertainty case. We present a branch and bound-algorithm for the min-max variant of these problems which uses lower bounds obtained from Lagrangean decomposition, allowing to separate the uncertainty aspect in the objective function from the combinatorial structure … Read more

An efficient dimer method with preconditioning and linesearch

The dimer method is a Hessian-free algorithm for computing saddle points. We augment the method with a linesearch mechanism for automatic step size selection as well as preconditioning capabilities. We prove local linear convergence. A series of numerical tests demonstrate significant performance gains. Citationhttp://arxiv.org/abs/1407.2817ArticleDownload View PDF

Robust Block Coordinate Descent

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At … Read more

A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming

We propose a feasible active set method for convex quadratic programming problems with non-negativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprara and Lodi to the presence … Read more

Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-type Constraints and a Regularization Method

Optimization problems with cardinality constraints are very dicult mathematical programs which are typically solved by global techniques from discrete optimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between the local minima is also discussed in … Read more

Globally Convergent Evolution Strategies for Constrained Optimization.

In this work we propose, analyze, and test algorithms for linearly constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, … Read more

HIGHER-ORDER METRIC SUBREGULARITY AND ITS APPLICATIONS

This paper is devoted to the study of metric subregularity and strong subregularity of any positive order $q$ for set-valued mappings in finite and infinite dimensions. While these notions have been studied and applied earlier for $q=1$ and—to a much lesser extent—for $q\in(0,1)$, no results are available for the case $q>1$. We derive characterizations of … Read more

An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution

We study the minimization of fixed-degree polynomials over the simplex. This problem is well-known to be NP-hard, as it contains the maximum stable set problem in graph theory as a special case. In this paper, we consider a rational approximation by taking the minimum over the regular grid, which consists of rational points with denominator … Read more