Sufficient Conditions for Low-rank Matrix Recovery,Translated from Sparse Signal Recovery

The low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields such as signal and image processing, statistics, computer vision, system identification and control. This class of optimization problems is $NP$-hard and a popular approach replaces the rank function with the nuclear norm of the … Read more

Immunizing conic quadratic optimization problems against implementation errors

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be … Read more

Optimal Design of Electrical Machines: Mathematical Programming Formulations

The optimal design of electrical machines can be mathematically modeled as a mixed-integer nonlinear optimization problem. We present six variants of such a problem, and we show, through extensive computational experiments, that, even though they are mathematically equivalent, the differences in the formulations may have an impact on the numerical performances of a local optimization … Read more

Copositive optimization – recent developments and applications

Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of … Read more

On Nesterov’s Smooth Chebyshev-Rosenbrock Function

We discuss a modification of the chained Rosenbrock function introduced by Nesterov, a polynomial of degree four of $n$ variables. Its only stationary point is the global minimizer with optimal value zero. An initial point is given such that any continuous piecewise linear descent path consists of at least an exponential number of $0.72 \cdot … Read more

Efficient Direct Multiple Shooting for Nonlinear Model Predictive Control on Long Horizons

We address direct multiple shooting based algorithms for nonlinear model predictive control, with a focus on problems with long prediction horizons. We describe different efficient multiple shooting variants with a computational effort that is only linear in the horizon length. Proposed techniques comprise structure exploiting linear algebra on the one hand, and approximation of derivative … Read more

Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures

In this paper we consider a mathematical model for magmatic mixtures based on the Gibbs free energy. Different reformulations of the problem are presented and some theoretical results about the existence and number of solutions are derived. Finally, two homotopy methods and a global optimization one are introduced and computationally tested. One of the homotopy … Read more

Dependence of bilevel programming on irrelevant data

In 1997, Macal and Hurter have found that adding a constraint to the lower level problem, which is not active at the computed global optimal solution, can destroy global optimality. In this paper this property is reconsidered and it is shown that this solution remains locally optimal under inner semicontinuity of the original solution set … Read more

Sampling Decisions in Optimum Experimental Design in the Light of Pontryagin’s Maximum Principle

Optimum Experimental Design (OED) problems are optimization problems in which an experimental setting and decisions on when to measure – the so-called sampling design – are to be determined such that a follow-up parameter estimation yields accurate results for model parameters. In this paper we use the interpretation of OED as optimal control problems with … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more