A subspace minimization method for the trust-region step

We consider methods for large-scale unconstrained minimization based on finding an approximate minimizer of a quadratic function subject to a two-norm trust-region constraint. The Steihaug-Toint method uses the conjugate-gradient (CG) algorithm to minimize the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. … Read more

On the Geometry Phase in Model-Based Algorithms for Derivative-Free Optimization

A numerical study of model-based methods for derivative-free optimization is presented. These methods typically include a geometry phase whose goal is to ensure the adequacy of the interpolation set. The paper studies the performance of an algorithm that dispenses with the geometry phase altogether (and therefore does not attempt to control the position of the … Read more

On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods

The solution of KKT systems is ubiquitous in optimization methods and often dominates the computation time, especially when large-scale problems are considered. Thus, the effective implementation of such methods is highly dependent on the availability of effective linear algebra algorithms and software, that are able, in turn, to take into account specific needs of optimization. … Read more

Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, … Read more

A conjugate-gradient based approach for approximate solutions of quadratic programs

This paper deals with numerical behaviour and convergence properties of a recently presented column generation approach for optimization of so called step-and-shoot radiotherapy treatment plans. The approach and variants of it have been reported to be efficient in practice, finding near-optimal solutions by generating only a low number of columns. The impact of different restrictions … Read more

Rigorous enclosures of ellipsoids and directed Cholesky factorizations

This paper discusses the rigorous enclosure of an ellipsoid by a rectangular box, its interval hull, providing a convenient preprocessing step for constrained optimization problems. A quadratic inequality constraint with a positive definite Hessian defines an ellipsoid. The Cholesky factorization can be used to transform a strictly convex quadratic constraint into a norm inequality, for … Read more

A scaling algorithm for polynomial constraint satisfaction problems

Good scaling is an essential requirement for the good behavior of many numerical algorithms. In particular, for problems involving multivariate polynomials, a change of scale in one or more variable may have drastic effects on the robustness of subsequent calculations. This paper surveys scaling algorithms for systems of polynomials from the literature, and discusses some … Read more

Pricing with uncertain customer valuations

Uncertain demand in pricing problems is often modeled using the sum of a linear price-response function and a zero-mean random variable. In this paper, we argue that the presence of uncertainty motivates the introduction of nonlinearities in the demand as a function of price, both in the risk-neutral and risk-sensitive models. We motivate our analysis … Read more

Kernel Support Vector Regression with imprecise output

We consider a regression problem where uncertainty affects to the dependent variable of the elements of the database. A model based on the standard epsilon-Support Vector Regression approach is given, where two hyperplanes need to be constructed to predict the interval-valued dependent variable. By using the Hausdorff distance to measure the error between predicted and … Read more