Finding a point in the relative interior of a polyhedron

A new initialization or `Phase I’ strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points — an all-pervasive assumption in interior point method theory that implies the existence of the central path … Read more

Global convergence of slanting filter methods for nonlinear programming

In this paper we present a general algorithm for nonlinear programming which uses a slanting filter criterion for accepting the new iterates. Independently of how these iterates are computed, we prove that all accumulation points of the sequence generated by the algorithm are feasible. Computing the new iterates by the inexact restoration method, we prove … Read more

A New Unblocking Technique to Warmstart Interior Point Methods based on Sensitivity Analysis

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced … Read more

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem … Read more

On Second-Order Optimality Conditions for Nonlinear Programming

Necessary Optimality Conditions for Nonlinear Programming are discussed in the present research. A new Second-Order condition is given, which depends on a weak constant rank constraint requirement. We show that practical and publicly available algorithms (www.ime.usp.br/~egbirgin/tango) of Augmented Lagrangian type converge, after slight modifications, to stationary points defined by the new condition. ArticleDownload View PDF

An Inexact SQP Method for Equality Constrained Optimization

We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved … Read more

A Filter Algorithm for Nonlinear Semidefinite Programming

This paper proposes a filter method for solving nonlinear semidefinite programming problems. Our method extends to this setting the filter SQP (sequential quadratic programming) algorithm, recently introduced for solving nonlinear programming problems, obtaining their respective global convergence results. CitationCMM-B-06/10 – 171 Centre for Mathematical Modelling, UMR 2071, Universidad de Chile-CNRS. Casilla 170-3 Santiago 3, Chile … Read more

The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle

We give a simple proof of the Maximum Principle for smooth hybrid control systems by reducing the hybrid problem to an optimal control problem of Pontryagin type and then by using the classical Pontryagin Maximum Principle. CitationA.V. Dmitruk, A.M. Kaganovich. The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle, Systems & Control Letters, … Read more

Using Simplex Gradients of Nonsmooth Functions in Direct Search Methods

It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions … Read more

Global Convergence of General Derivative-Free Trust-Region Algorithms to First and Second Order Critical Points

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, … Read more