Combinatorial Structures in Nonlinear Programming

Non-smoothness and non-convexity in optimization problems often arise because a combinatorial structure is imposed on smooth or convex data. The combinatorial aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in a model, or implicit as in the case of bilevel optimization where the combinatorial structure arises from the possible … Read more

The Penalty Interior Point Method fails to converge for Mathematical Programs with Equilibrium Constraints

This paper presents a small example for which the Penalty Interior Point Method converges to a non-stationary point. The reasons for this adverse behaviour are discussed. CitationNumerical Analysis Report NA/208, Department of Mathematics, University of Dundee, February 2002.ArticleDownload View PDF

Local convergence of SQP methods for Mathematical Programs with Equilibrium Constraints

Recently, it has been shown that Nonlinear Programming solvers can successfully solve a range of Mathematical Programs with Equilibrium Constraints (MPECs). In particular, Sequential Quadratic Programming (SQP) methods have been very successful. This paper examines the local convergence properties of SQP methods applied to MPECs. It is shown that SQP converges superlinearly under reasonable assumptions … Read more

Relations between divergence of multipliers and convergence to infeasible points in primal-dual interior methods for nonconvex nonlinear programming

Recently, infeasibility issues in interior methods for nonconvex nonlinear programming have been studied. In particular, it has been shown how many line-search interior methods may converge to an infeasible point which is on the boundary of the feasible region with respect to the inequality constraints. The convergence is such that the search direction does not … Read more

The least-intensity feasible solution for aperture-based inverse planning in radiation therapy.

Aperture-based inverse planning (ABIP) for intensity modulated radiation therapy (IMRT) treatment planning starts with external radiation fields (beams) that fully conform to the target(s) and then superimposes sub-fields called segments to achieve complex shaping of 3D dose distributions. The segments’ intensities are determined by solving a feasibility problem. The least-intensity feasible (LIF) solution, proposed and … Read more

CUTEr (and SifDec), a Constrained and Unconstrained Testing Environment, revisited

The initial release of CUTE, a widely used testing environment for optimization software was described by Bongartz, Conn, Gould and Toint. The latest version, now known as CUTEr, is presented. New features include reorganisation of the environment to allow simultaneous multi-platform installation, new tools for, and interfaces to, optimization packages, and a considerably simplified and … Read more

Reduntant axioms in the definitionof Bregman functions

The definition of a Bregman function, given by Censor and Lent in 1981 on the basis of Bregman’s seminal 1967 paper, was subsequently used in a plethora of research works as a tool for building sequential and inherently parallel feasibility and optimization algorithms. Solodov and Svaiter have recently shown that it is not CitationJournal of … Read more

Block-Iterative Algorithms with Underrelaxed Bregman Projections

The notion of relaxation is well understood for orthogonal projections onto convex sets. For general Bregman projections it was considered only for hyperplanes and the question of how to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces) has remained open. A definition of underrelaxation of Bregman projections onto … Read more

Optimality Conditions for Vector Optimization with Set-Valued Maps

Based on near convexity, we introduce the concepts of nearly convexlike set-valued maps and nearly semiconvexlike set-valued maps, give some charaterizations of them, and investigate the relationships between them. Then a Farkas-Minkowski type alternative theorem is shown under the assumption of near semiconvexlikeness. By using the alternative theorem and some other lemmas, we establish necessary … Read more

Recovery of the Analytic Center in Perturbed Quadratic Regions and Applications

We present results to recover an approximate analytic center when a sectional convex quadratic set is perturbed by a finite number of new quadratic inequalities. This kind of restarting may play an important role in some interior-point algorithms that successively refine the region where is the solution of the original problem. CitationTechnical Repor ES 508-99, … Read more