CUTEr (and SifDec), a Constrained and Unconstrained Testing Environment, revisited

The initial release of CUTE, a widely used testing environment for optimization software was described by Bongartz, Conn, Gould and Toint. The latest version, now known as CUTEr, is presented. New features include reorganisation of the environment to allow simultaneous multi-platform installation, new tools for, and interfaces to, optimization packages, and a considerably simplified and … Read more

Reduntant axioms in the definitionof Bregman functions

The definition of a Bregman function, given by Censor and Lent in 1981 on the basis of Bregman’s seminal 1967 paper, was subsequently used in a plethora of research works as a tool for building sequential and inherently parallel feasibility and optimization algorithms. Solodov and Svaiter have recently shown that it is not CitationJournal of … Read more

Block-Iterative Algorithms with Underrelaxed Bregman Projections

The notion of relaxation is well understood for orthogonal projections onto convex sets. For general Bregman projections it was considered only for hyperplanes and the question of how to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces) has remained open. A definition of underrelaxation of Bregman projections onto … Read more

Optimality Conditions for Vector Optimization with Set-Valued Maps

Based on near convexity, we introduce the concepts of nearly convexlike set-valued maps and nearly semiconvexlike set-valued maps, give some charaterizations of them, and investigate the relationships between them. Then a Farkas-Minkowski type alternative theorem is shown under the assumption of near semiconvexlikeness. By using the alternative theorem and some other lemmas, we establish necessary … Read more

Recovery of the Analytic Center in Perturbed Quadratic Regions and Applications

We present results to recover an approximate analytic center when a sectional convex quadratic set is perturbed by a finite number of new quadratic inequalities. This kind of restarting may play an important role in some interior-point algorithms that successively refine the region where is the solution of the original problem. CitationTechnical Repor ES 508-99, … Read more

Sparsity issues in the computation of Jacobian Matrices

The knowledge of sparsity information plays an important role in efficient determination of sparse Jacobian matrices. In a recent work, we have proposed sparsity-exploiting substitution techniques to determine Jacobian matrices. In this paper, we take a closer look at the underlying combinatorial problem. We propose a column ordering heuristic to augment the “usable sparsity” in … Read more

Space mapping: Models, sensitivities, and trust-regions methods

The goal of this paper is to organize some of the mathematical and algorithmic aspects of the recently proposed space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming

In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, … Read more

A Robust Primal-Dual Interior-Point Algorithm for Nonlinear Programs

We present a primal-dual interior-point algorithm of line-search type for nonlinear programs, which uses a new decomposition scheme of sequential quadratic programming. The algorithm can circumvent the convergence difficulties of some existing interior-point methods. Global convergence properties are derived without assuming regularity conditions. The penalty parameter rho in the merit function is updated automatically such … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more