A four-operator splitting algorithm for nonconvex and nonsmooth optimization

In this work, we address a class of nonconvex nonsmooth optimization problems where the objective function is the sum of two smooth functions (one of which is proximable) and two nonsmooth functions (one proper, closed and proximable, and the other continuous and weakly concave). We introduce a new splitting algorithm that extends the Davis-Yin splitting … Read more

Complexity of Adagrad and other first-order methods for nonconvex optimization problems with bounds constraints

A parametric class of trust-region algorithms for constrained nonconvex optimization is analyzed, where the objective function is never computed. By defining appropriate first-order stationarity criteria, we are able to extend the Adagrad method to the newly considered problem and retrieve the standard complexity rate of the projected gradient method that uses both the gradient and … Read more

Composite optimization models via proximal gradient method with a novel enhanced adaptive stepsize

We first consider the convex composite optimization models with the local Lipschitzness condition imposed on the gradient of the differentiable term. The classical proximal gradient method will be studied with our novel enhanced adaptive stepsize selection. To obtain the convergence of the proposed algorithm, we establish a sufficient decrease type inequality associated with our new … Read more

Optimization without Retraction on the Random Generalized Stiefel Manifold

Optimization over the set of matrices \(X\) that satisfy \(X^\top B X = I_p\), referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods … Read more

Floorplanning with I/O assignment via feasibility-seeking and superiorization methods

The feasibility-seeking approach offers a systematic framework for managing and resolving intricate constraints in continuous problems, making it a promising avenue to explore in the context of floorplanning problems with increasingly heterogeneous constraints. The classic legality constraints can be expressed as the union of convex sets. However, conventional projection-based algorithms for feasibility-seeking do not guarantee … Read more

A mathematical introduction to SVMs with self-concordant kernel

A derivation of so-called “soft-margin support vector machines with kernel” is presented along with elementary proofs that do not rely on concepts from functional analysis such as Mercer’s theorem or reproducing kernel Hilbert spaces which are frequently cited in this context. The analysis leads to new continuity properties of the kernel functions, in particular a … Read more

solar: A solar thermal power plant simulator for blackbox optimization benchmarking

This work introduces solar, a collection of  ten optimization problem instances for benchmarking blackbox optimization solvers. The instances present different design aspects of a concentrated solar power plant simulated by blackbox numerical models. The type of variables (discrete or continuous), dimensionality, and number and types of constraints (including hidden constraints)  differ across instances. Some are deterministic, others are stochastic … Read more

Exploiting cone approximations in an augmented Lagrangian method for conic optimization

We propose an algorithm for general nonlinear conic programming which does not require the knowledge of the full cone, but rather a simpler, more tractable, approximation of it. We prove that the algorithm satisfies a strong global convergence property in the sense that it generates a strong sequential optimality condition. In particular, a KKT point … Read more

On the global convergence of a general class of augmented Lagrangian methods

In [E. G. Birgin, R. Castillo and J. M. Martínez, Computational Optimization and Applications 31, pp. 31-55, 2005], a general class of safeguarded augmented Lagrangian methods is introduced which includes a large number of different methods from the literature. Besides a numerical comparison including 65 different methods, primal-dual global convergence to a KKT point is … Read more