Random projections for trust region subproblems

The trust region method is an algorithm traditionally used in the field of derivative free optimization. The method works by iteratively constructing surrogate models (often linear or quadratic functions) to approximate the true objective function inside some neighborhood of a current iterate. The neighborhood is called “trust region” in the sense that the model is … Read more

Robust Quadratic Programming with Mixed-Integer Uncertainty

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming … Read more

A simplicial decomposition framework for large scale convex quadratic programming

In this paper, we analyze in depth a simplicial decomposition like algorithmic framework for large scale convex quadratic programming. In particular, we first propose two tailored strategies for handling the master problem. Then, we describe a few techniques for speeding up the solution of the pricing problem. We report extensive numerical experiments on both real … Read more

Extending the Scope of Robust Quadratic Optimization

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. In particular, we show how to reformulate the support functions of uncertainty sets represented in terms of matrix norms and cones. Our … Read more

A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables

We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-constrained convex quadratic programming [J.J. More’ and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations … Read more

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more

A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more

Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal value. In this paper, we modify the hierarchy to deal with problems containing equality … Read more

QPLIB: A Library of Quadratic Programming Instances

This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging … Read more

A Condensing Algorithm for Nonlinear MPC with a Quadratic Runtime in Horizon Length

A large number of practical algorithms for Optimal Control Problems (OCP) relies on a so-called condensing procedure to exploit the given structure in the quadratic programming (QP) subproblems. While the established structure-exploiting condensing algorithm is of cubic complexity in the horizon length, in this technical note we propose a novel algorithm that is only of … Read more