Spectral estimates for unreduced symmetric KKT systems arising from Interior Point methods

We consider symmetrized KKT systems arising in the solution of convex quadratic programming problems in standard form by Interior Point methods. Their coefficient matrices usually have 3×3 block structure and, under suitable conditions on both the quadratic programming problem and the solution, they are nonsingular in the limit. We present new spectral estimates for these … Read more

On the update of constraint preconditioners for regularized KKT systems

We address the problem of preconditioning sequences of regularized KKT systems, such as those arising in Interior Point methods for convex quadratic programming. In this case, Constraint Preconditioners (CPs) are very effective and widely used; however, when solving large-scale problems, the computational cost for their factorization may be high, and techniques for approximating them appear … Read more

On solving symmetric systems of linear equations in an unnormalized Krylov subspace framework

In an unnormalized Krylov subspace framework for solving symmetric systems of linear equations, the orthogonal vectors that are generated by a Lanczos process are not necessarily on the form of gradients. Associating each orthogonal vector with a triple, and using only the three-term recurrences of the triples, we give conditions on whether a symmetric system … Read more

Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations

The current bottleneck of globally solving mixed-integer (nonconvex) quadratically constrained problem (MIQCP) is still to construct strong but computationally cheap convex relaxations, especially when dense quadratic functions are present. We pro- pose a cutting surface procedure based on multiple diagonal perturbations to derive strong convex quadratic relaxations for nonconvex quadratic problem with separable constraints. Our … Read more

Distributed Optimization Methods for Large Scale Optimal Control

This thesis aims to develop and implement both nonlinear and linear distributed optimization methods that are applicable, but not restricted to the optimal control of distributed systems. Such systems are typically large scale, thus the well-established centralized solution strategies may be computationally overly expensive or impossible and the application of alternative control algorithms becomes necessary. … Read more

Subset Selection by Mallows’ Cp: A Mixed Integer Programming Approach

This paper concerns a method of selecting the best subset of explanatory variables for a linear regression model. Employing Mallows’ C_p as a goodness-of-fit measure, we formulate the subset selection problem as a mixed integer quadratic programming problem. Computational results demonstrate that our method provides the best subset of variables in a few seconds when … Read more

Active Set Methods with Reoptimization for Convex Quadratic Integer Programming

We present a fast branch-and-bound algorithm for solving convex quadratic integer programs with few linear constraints. In each node, we solve the dual problem of the continuous relaxation using an infeasible active set method proposed by Kunisch and Rendl to get a lower bound; this active set algorithm is well suited for reoptimization. Our algorithm … Read more

A Revisit to Quadratic Programming with One Inequality Quadratic Constraint via Matrix Pencil

The quadratic programming over one inequality quadratic constraint (QP1QC) is a very special case of quadratically constrained quadratic programming (QCQP) and attracted much attention since early 1990’s. It is now understood that, under the primal Slater condition, (QP1QC) has a tight SDP relaxation (PSDP). The optimal solution to (QP1QC), if exists, can be obtained by … Read more

Trust Region Subproblem with a Fixed Number of Additional Linear Inequality Constraints has Polynomial Complexity

The trust region subproblem with a fixed number m additional linear inequality constraints, denoted by (T_m), have drawn much attention recently. The question as to whether Problem ( T_m) is in Class P or Class NP remains open. So far, the only affirmative general result is that (T_1) has an exact SOCP/SDP reformulation and thus … Read more