A Slightly Lifted Convex Relaxation for Nonconvex Quadratic Programming with Ball Constraints

Globally optimizing a nonconvex quadratic over the intersection of $m$ balls in $\mathbb{R}^n$ is known to be polynomial-time solvable for fixed $m$. Moreover, when $m=1$, the standard semidefinite relaxation is exact. When $m=2$, it has been shown recently that an exact relaxation can be constructed using a disjunctive semidefinite formulation based essentially on two copies … Read more

Force-Controlled Pose Optimization and Trajectory Planning for Chained Stewart Platforms

We study optimization methods applied to minimizing forces for poses and movements of chained Stewart platforms (SPs) that we call an “Assembler” Robot. These chained SPs are parallel mechanisms that are stronger, stiffer, and more precise, on average, than their serial counterparts at the cost of a smaller range of motion. Linking these units in … Read more

A classification method based on a cloud of spheres

In this article we propose a binary classification model to distinguish a specific class that corresponds to a characteristic that we intend to identify (fraud, spam, disease). The classification model is based on a cloud of spheres that circumscribes the points of the class to be identified. It is intended to build a model based … Read more

Enhancements of Discretization Approaches for Non-Convex Mixed-Integer Quadratically Constraint Quadratic Programming: Part II

Abstract. This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products and extend the well-known MIP relaxation normalized multiparametric disaggregation technique (NMDT), applying a sophisticated discretization to both … Read more

The Jordan algebraic structure of the rotated quadratic cone

In this paper, we look into the rotated quadratic cone and analyze its algebraic structure. We construct an algebra associated with this cone and show that this algebra is a Euclidean Jordan algebra (EJA) with a certain inner product. We also demonstrate some spectral and algebraic characteristics of this EJA. The rotated quadratic cone is … Read more

Joint MSE Constrained Hybrid Beamforming and Reconfigurable Intelligent Surface

In this paper, the symbol detection mean squared error (MSE) constrained hybrid analog and digital beamforming is proposed in millimeter wave (mmWave) system, and the reconfigurable intelligent surface (RIS) is proposed to assist the mmWave system. The inner majorization-minimization (iMM) method is proposed to obtain analog transmitter, RIS and analog receivers, and the alternating direction … Read more

Enhancements of Discretization Approaches for Non-Convex Mixed-Integer Quadratically Constraint Quadratic Programming: Part I

We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non-convex continuous variable products. In Part I, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for non-convex quadratic products … Read more

A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold

We study semidefinite programming (SDP) relaxations for the NP-hard problem of globally optimizing a quadratic function over the Stiefel manifold. We introduce a strengthened relaxation based on two recent ideas in the literature: (i) a tailored SDP for objectives with a block-diagonal Hessian; (ii) and the use of the Kronecker matrix product to construct SDP relaxations. Using synthetic instances on … Read more

Accelerated first-order methods for a class of semidefinite programs

This paper introduces a new storage-optimal first-order method (FOM), CertSDP, for solving a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we consider, the exact QMP-like SDPs , is characterized by low-rank solutions, a priori knowledge of the restriction of the SDP solution to a small subspace, and standard … Read more