Extended Barzilai-Borwein method for unconstrained minimization problems

In 1988, Barzilai and Borwein presented a new choice of step size for the gradient method for solving unconstrained minimization problems. Their method aimed to accelerate the convergence of the steepest descent method. The Barzilai-Borwein method requires few storage locations and inexpensive computations. Therefore, several authors have paid attention to the Barzilai-Borwein method and have … Read more

Accelerated line-search and trust-region methods

In numerical optimization, line-search and trust-region methods are two important classes of descent schemes, with well-understood global convergence properties. Here we consider “accelerated” versions of these methods, where the conventional iterate is allowed to be replaced by any point that produces at least as much decrease in the cost function as a fixed fraction of … Read more

A subspace minimization method for the trust-region step

We consider methods for large-scale unconstrained minimization based on finding an approximate minimizer of a quadratic function subject to a two-norm trust-region constraint. The Steihaug-Toint method uses the conjugate-gradient (CG) algorithm to minimize the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. … Read more

Benchmarking Derivative-Free Optimization Algorithms

We propose data profiles as a tool for analyzing the performance of derivative-free optimization solvers when there are constraints on the computational budget. We use performance and data profiles, together with a convergence test that measures the decrease in function value, to analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth … Read more

Primal interior point method for minimization of generalized minimax functions

In this report, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning … Read more

Iterative methods for finding a trust-region step

We consider the problem of finding an approximate minimizer of a general quadratic function subject to a two-norm constraint. The Steihaug-Toint method minimizes the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. The benefit of this approach is that an approximate solution … Read more

Multi-Secant Equations, Approximate Invariant Subspaces and Multigrid Optimization

New approximate secant equations are shown to result from the knowledge of (problem dependent) invariant subspace information, which in turn suggests improvements in quasi-Newton methods for unconstrained minimization. It is also shown that this type of information may often be extracted from the multigrid structure of discretized infinite dimensional problems. A new limited-memory BFGS using … Read more

A Retrospective Trust-Region Method for Unconstrained Optimization

We introduce a new trust-region method for unconstrained optimization where the radius update is computed using the model information at the current iterate rather than at the preceding one. The update is then performed according to how well the current model retrospectively predicts the value of the objective function at last iterate. Global convergence to … Read more

Bracketing an Optima in Univariate Optimization

In this article, we consider some problems of bracketing an optimum point for a real-valued, single variable function. We show that, no method, satisfying certain assumptions and requiring a bounded number of function evaluations, can exist to bracket the minimum point of a unimodal function. A similar result is given also for the problem of … Read more

A multilevel algorithm for solving the trust-region subproblem

We present a multilevel numerical algorithm for the exact solution of the Euclidean trust-region subproblem. This particular subproblem typically arises when optimizing a nonlinear (possibly non-convex) objective function whose variables are discretized continuous functions, in which case the different levels of discretization provide a natural multilevel context. The trust-region problem is considered at the highest … Read more