CasADi – A software framework for nonlinear optimization and optimal control

We present CasADi, an open-source software framework for numerical optimization. CasADi is a general-purpose tool that can be used to model and solve optimization problems with a large degree of flexibility, larger than what is associated with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. Of special interest are problems constrained by … Read more

SDDP.jl: a Julia package for Stochastic Dual Dynamic Programming

In this paper we present SDDP.jl, an open-source library for solving multistage stochastic optimization problems using the Stochastic Dual Dynamic Programming algorithm. SDDP.jl is built upon JuMP, an algebraic modelling language in Julia. This enables a high-level interface for the user, while simultaneously providing performance that is similar to implementations in low-level languages. We benchmark … Read more

A note on using performance and data profiles for training algorithms

It is shown how to use the performance and data profile benchmarking tools to improve algorithms’ performance. An illustration for the BFO derivative-free optimizer suggests that the obtained gains are potentially significant. Citation ACM Transactions on Mathematical Software, 45:2 (2019), Article 20. Article Download View A note on using performance and data profiles for training … Read more

An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning

Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent framework (CoCoA) and its improved variant CoCoA+ have been proposed, achieving a convergence rate of $\mathcal{O}(1/t)$ for solving empirical risk minimization problems with Lipschitz continuous losses. … Read more

BASBL: Branch-And-Sandwich BiLevel solver. II. Implementation and computational study with the BASBLib test set

We describe BASBL, our implementation of the deterministic global optimization algorithm Branch-and-Sandwich for nonconvex/nonlinear bilevel problems, within the open-source MINOTAUR framework. The solver incorporates the original Branch-and-Sandwich algorithm and modifications proposed in the first part of this work. We also introduce BASBLib, an extensive online library of bilevel benchmark problems collected from the literature and … Read more

Minotaur: A Mixed-Integer Nonlinear Optimization Toolkit

We present a flexible framework for general mixed-integer nonlinear programming (MINLP), called Minotaur, that enables both algorithm exploration and structure exploitation without compromising computational efficiency. This paper documents the concepts and classes in our framework and shows that our implementations of standard MINLP techniques are efficient compared with other state-of-the-art solvers. We then describe structure-exploiting … Read more

DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization

Machine learning with big data often involves large optimization models. For distributed optimization over a cluster of machines, frequent communication and synchronization of all model parameters (optimization variables) can be very costly. A promising solution is to use parameter servers to store different subsets of the model parameters, and update them asynchronously at different machines … Read more

FPBH.jl: A Feasibility Pump Based Heuristic for Multi-objective Mixed Integer Linear Programming in Julia

Feasibility pump is one of the successful heuristic solution approaches developed almost a decade ago for computing high-quality feasible solutions of single-objective integer linear programs, and it is implemented in exact commercial solvers such as CPLEX and Gurobi. In this study, we present the first Feasibility Pump Based Heuristic (FPBH) approach for approximately generating nondominated … Read more

Shaping and Trimming Branch-and-bound Trees

We present a new branch-and-bound type search method for mixed integer linear optimization problems based on the concept of offshoots (introduced in this paper). While similar to a classic branch-and-bound method, it allows for changing the order of the variables in a dive (shaping) and removing unnecessary branching variables from a dive (trimming). The regular … Read more

On the effectiveness of primal and dual heuristics for the transportation problem

The transportation problem is one of the most popular problems in linear programming. Over the course of time a multitude of exact solution methods and heuristics have been proposed. Due to substantial progress of exact solvers since the mid of the last century, the interest in heuristics for the transportation problem over the last few … Read more