A Rank-One-Update Method for the Training of Support Vector Machines

This paper considers convex quadratic programs associated with the training of support vector machines (SVM). Exploiting the special structure of the SVM problem a new type of active set method with long cycles and stable rank-one-updates is proposed and tested (CMU: cycling method with updates). The structure of the problem allows for a repeated simple … Read more

Spherical Support Vector Machine for Interval-Valued Data

In this work we propose a generalization of the Spherical Support Vector Machine method, in which the separator is a sphere, applied to Interval-valued data. This type of data belongs to a more general class, known as Symbolic Data, for which features are described by sets, intervals or histograms instead of classic arrays. This paradigm … Read more

prunAdag: an adaptive pruning-aware gradient method

A pruning-aware adaptive gradient method is proposed which classifies the variables in two sets before updating them using different strategies. This technique extends the “relevant/irrelevant” approach of Ding (2019) and Zimmer et al. (2022) and allows a posteriori sparsification of the solution of model parameter fitting problems. The new method is proved to be convergent … Read more

A Generalized Voting Game for Categorical Network Choices

This paper presents a game-theoretical framework for data classification and network discovery, focusing on pairwise influences in multivariate choices. The framework consists of two complementary games in which individuals, connected through a signed weighted graph, exhibit network similarity. A voting rule captures the influence of an individual’s neighbors, categorized as attractive (friend-like) or repulsive (enemy-like), … Read more

Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization

The exponential growth in data availability in recent years has led to new formulations of data-driven optimization problems. One such formulation is that of stochastic optimization problems with contextual information, where the goal is to optimize the expected value of a certain function given some contextual information (also called features) that accompany the main data … Read more

Optimism in the Face of Ambiguity Principle for Multi-Armed Bandits

Follow-The-Regularized-Leader (FTRL) algorithms often enjoy optimal regret for adversarial as well as stochastic bandit problems and allow for a streamlined analysis. However, FTRL algorithms require the solution of an optimization problem in every iteration and are thus computationally challenging. In contrast, Follow-The-Perturbed-Leader (FTPL) algorithms achieve computational efficiency by perturbing the estimates of the rewards of … Read more

Forecasting Urban Traffic States with Sparse Data Using Hankel Temporal Matrix Factorization

Forecasting urban traffic states is crucial to transportation network monitoring and management, playing an important role in the decision-making process. Despite the substantial progress that has been made in developing accurate, efficient, and reliable algorithms for traffic forecasting, most existing approaches fail to handle sparsity, high-dimensionality, and nonstationarity in traffic time series and seldom consider … Read more

Regularized Gradient Clipping Provably Trains Wide and Deep Neural Networks

In this work, we instantiate a regularized form of the gradient clipping algorithm and prove that it can converge to the global minima of deep neural network loss functions provided that the net is of sufficient width. We present empirical evidence that our theoretically founded regularized gradient clipping algorithm is also competitive with the state-of-the-art … Read more

Predictive Low Rank Matrix Learning under Partial Observations: Mixed-Projection ADMM

We study the problem of learning a partially observed matrix under the low rank assumption in the presence of fully observed side information that depends linearly on the true underlying matrix. This problem consists of an important generalization of the Matrix Completion problem, a central problem in Statistics, Operations Research and Machine Learning, that arises … Read more