POST-PARETO ANALYSIS FOR MULTIOBJECTIVE PARABOLIC CONTROL SYSTEMS

In this paper is presented the problem of optimizing a functional over a Pareto control set associated with a convex multiobjective control problem in Hilbert spaces, namely parabolic system. This approach generalizes for this setting some results obtained in finite dimensions. Some examples are presented. General optimality results are obtained, and a special attention is … Read more

Optimization with multivariate conditional value-at-risk constraints

For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers’ risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate … Read more

Simultaneous approximation of multi-criteria submodular function maximization

Recently there has been intensive interest on approximation of the NP-hard submodular maximization problem due to their theoretical and practical significance. In this work, we extend this line of research by focusing on the simultaneous approximation of multiple submodular function maximization. We address existence and nonexistence results for both deterministic and randomized approximation when the … Read more

Efficient Cardinality/Mean-Variance Portfolios

A number of variants of the classical Markowitz mean-variance optimization model for portfolio selection have been investigated to render it more realistic. Recently, it has been studied the imposition of a cardinality constraint, setting an upper bound on the number of active positions taken in the portfolio, in an attempt to improve its performance and … Read more

A Fast Algorithm for Constructing Efficient Event-Related fMRI Designs

We propose a novel, ecient approach for obtaining high-quality experimental designs for event-related functional magnetic resonance imaging (ER-fMRI). Our approach combines a greedy hillclimbing algorithm and a cyclic permutation method. When searching for optimal ER-fMRI designs, the proposed approach focuses only on a promising restricted class of designs with equal frequency of occurrence across stimulus … Read more

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

This paper proposes a new probabilistic algorithm for solving multi-objective optimization problems – Probability-Driven Search Algorithm. The algorithm uses probabilities to control the process in search of Pareto optimal solutions. Especially, we use the absorbing Markov Chain to argue the convergence of the algorithm. We test this approach by implementing the algorithm on some benchmark … Read more

Error bounds for vector-valued functions on metric spaces

In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new primal space derivative-like objects — slopes — are introduced and a classification scheme of error bound criteria is presented. CitationPublished in Vietnam Journal … Read more

A quadratically convergent Newton method for vector optimization

We propose a Newton method for solving smooth unconstrained vector optimization problems under partial orders induced by general closed convex pointed cones. The method extends the one proposed by Fliege, Grana Drummond and Svaiter for multicriteria, which in turn is an extension of the classical Newton method for scalar optimization. The steplength is chosen by … Read more

Real-Time Optimization Strategies for Building Systems

We propose real-time optimization strategies for energy management in building systems. We have found that exploiting building-wide multivariable interactions between CO2 and humidity, pressure, occupancy, and temperature leads to significant reductions of energy intensity compared with traditional strategies. Our analysis indicates that it is possible to obtain energy savings of more than 50% compared with … Read more

Multi-objective GRASP with path-relinking

In this paper we propose an adaptation of the GRASP metaheuristic to solve multi-objective combinatorial optimization problems. In particular we describe several alternatives to specialize the construction and improvement components of GRASP when two or more objectives are considered. GRASP has been successfully coupled with path-relinking for single-objective optimization. In this paper, we propose different … Read more