A Unified Framework for Multistage and Multilevel Mixed Integer Linear Optimization

We introduce a unified framework for the study of multilevel mixed integer linear optimization problems and multistage stochastic mixed integer linear optimization problems with recourse. The framework highlights the common mathematical structure of the two problems and allows for the development of a common algorithmic framework. Focusing on the two-stage case, we investigate, in particular, … Read more

A Framework for Generalized Benders’ Decomposition and Its Application to Multilevel Optimization

We describe an algorithmic framework generalizing the well-known framework originally introduced by Benders. We apply this framework to several classes of optimization problems that fall under the broad umbrella of multilevel/multistage mixed integer linear optimization problems. The development of the abstract framework and its application to this broad class of problems provides new insights and … Read more

A Framework for Adaptive Open-pit Mining Planning under Geological Uncertainty

Mine planning optimization aims at maximizing the profit obtained from extracting valuable ore. Beyond its theoretical complexity (the open-pit mining problem with capacity constraints reduces to a knapsack problem with precedence constraints, which is NP-hard), practical instances of the problem usually involve a large to very large number of decision variables, typically of the order … Read more

On the exact separation of cover inequalities of maximum depth

We investigate the problem of exactly separating cover inequalities of maximum depth and we develop a pseudo-polynomial-time algorithm for this purpose. Compared to the standard method based on the maximum violation, computational experiments carried out on knapsack and multi-dimensional knapsack instances show that, with a cutting-plane method based on the maximum-depth criterion, we can optimize … Read more

Conditional gradient method for multiobjective optimization

We analyze the conditional gradient method, also known as Frank-Wolfe method, for constrained multiobjective optimization. The constraint set is assumed to be convex and compact, and the objectives functions are assumed to be continuously differentiable. The method is considered with different strategies for obtaining the step sizes. Asymptotic convergence properties and iteration-complexity bounds with and … Read more

An inexact scalarized proximal algorithm with quasi- distance for convex and quasiconvex multi-objective minimization

In the paper of Rocha et al., J Optim Theory Appl (2016) 171:964979, the authors introduced a proximal point algorithm with quasi-distances to solve unconstrained convex multi-objective minimization problems. They proved that all accumulation points are ecient solutions of the problem. In this pa- per we analyze an inexact proximal point algorithm to solve convex … Read more

Dynamic Node Packing

We propose a dynamic version of the classical node packing problem, also called the stable set or independent set problem. The problem is defined by a node set, a node weight vector, and an edge probability vector. For every pair of nodes, an edge is present or not according to an independent Bernoulli random variable … Read more

The Magic of Nash Social Welfare in Optimization: Do Not Sum, Just Multiply!

In this paper, we explain some key challenges when dealing with a single/multi-objective optimization problem in practice. To overcome these challenges, we present a mathematical program that optimizes a Nash Social Welfare function. We refer to this mathematical program as the Nash Social Welfare Program (NSWP). An interesting property of the NSWP is that it … Read more

The Value of Randomized Strategies in Distributionally Robust Risk Averse Network Interdiction Games

Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-averse agent in the extreme loss scenarios. To study the effectiveness of randomization in interdiction games with an interdictor that is both risk and ambiguity averse, we introduce a distributionally robust network interdiction game where the interdictor randomizes over the … Read more

Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

In this paper we address a game theory problem arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problem addressed in this paper an additional quadratic term is added to the minimization problem. … Read more