Optimization with stochastic preferences based on a general class of scalarization functions
It is of crucial importance to develop risk-averse models for multicriteria decision making under uncertainty. A major stream of the related literature studies optimization problems that feature multivariate stochastic benchmarking constraints. These problems typically involve a univariate stochastic preference relation, often based on stochastic dominance or a coherent risk measure such as conditional value-at-risk (CVaR), … Read more