A joint routing and speed optimization problem

Fuel cost contributes to a significant portion of operating cost in cargo transportation. Though classic routing models usually treat fuel cost as input data, fuel consumption heavily depends on the travel speed, which has led to the study of optimizing speeds over a given fixed route. In this paper, we propose a joint routing and … Read more

Gap functions for quasi-equilibria

An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a gap function are analysed and an upper estimates of its Clarke directional derivative is given. Monotonicity assumptions on both the equilibrium and constraining bifunctions are a key tool … Read more

A new algorithm for solving planar multiobjective location problems involving the Manhattan norm

This paper is devoted to the study of unconstrained planar multiobjective location problems, where distances between points are defined by means of the Manhattan norm. By identifying all nonessential objectives, we develop an effective algorithm for generating the whole set of efficient solutions. We prove the correctness of this algorithm and present some computational results, … Read more

A characterization of Nash equilibrium for the games with random payoffs

We consider a two player bimatrix game where the entries of the payoff matrices are random variables. We formulate this problem as a chance-constrained game by considering that the payoff of each player is defined using a chance constraint. We consider the case where the entries of the payoff matrices are independent normal/Cauchy random variables. … Read more

Application of the Laminar Navier-Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints. Implementation and validation in Comsol Multiphysics.

Pathfinding problems consist in determining the optimal shortest path, or at least one path, between two points in the space. In this paper, we propose a particular approach, based on methods used in Computational Fluid Dynamics, that intends to solve such problems. In particular, we reformulate pathfinding problems as the motion of a viscous fluid … Read more

A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy

Given $n$ elements with nonnegative integer weights $w=(w_1,\ldots,w_n)$, an integer capacity $C$ and positive integer ranges $u=(u_1,\ldots,u_n)$, we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most $C$. We give a deterministic algorithm that estimates the number of solutions to within … Read more

Totally Unimodular Congestion Games

We investigate a new class of congestion games, called Totally Unimodular Congestion Games, in which the strategies of each player are expressed as binary vectors lying in a polyhedron defined using a totally unimodular constraint matrix and an integer right-hand side. We study both the symmetric and the asymmetric variants of the game. In the … Read more

Relationships between constrained and unconstrained multi-objective optimization and application in location theory

This article deals with constrained multi-objective optimization problems. The main purpose of the article is to investigate relationships between constrained and unconstrained multi-objective optimization problems. Under suitable assumptions (e.g., generalized convexity assumptions) we derive a characterization of the set of (strictly, weakly) efficient solutions of a constrained multi-objective optimization problem using characterizations of the sets … Read more

The Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost

The budgeted minimum cost flow problem (BMCF(K)) with unit upgrading costs extends the classical minimum cost flow problem by allowing to reduce the cost of at most K arcs. In this paper, we consider complexity and algorithms for the special case of an uncapacitated network with just one source. By a reduction from 3-SAT we … Read more

High Throughput Computing for Massive Scenario Analysis and Optimization to Minimize Cascading Blackout Risk

We describe a simulation-based optimization method that allocates additional capacity to transmission lines in order to minimize the expected value of the load shed due to a cascading blackout. Estimation of the load-shed distribution is accomplished via the ORNL-PSerc-Alaska (OPA) simulation model, which solves a sequence of linear programs. Key to achieving an effective algorithm … Read more