A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the … Read more

A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the … Read more

Strong slopes of a vector-valued map and applications in the study of error bounds, weak sharp minima and calmness

Using Hiriart-Urruty’s signed distance function, we present new definitions of strong slopes for a vector-valued map recently introduced in [E.M. Bednarczuk, A.Y., Kruger, Error bounds for vector-valued functions on metric spaces. Vietnam J. Math. 40 (2012), no. 2-3, 165-180]. With the new presentation, we are able to show that these slopes enjoy most properties of … Read more

Distributionally robust chance-constrained games: Existence and characterization of Nash equilibrium

We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider … Read more

A Quantitative Comparison of Risk Measures

The choice of a risk measure reflects a subjective preference of the decision maker in many managerial, or real world economic problem formulations. To evaluate the impact of personal preferences it is thus of interest to have comparisons with other risk measures at hand. This paper develops a framework for comparing different risk measures. We … Read more

Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization

This paper presents an approach to non-stationary policy search for finite-horizon, discrete-time Markovian decision problems with large state spaces, constrained action sets, and a risk-sensitive optimality criterion. The methodology relies on modeling time variant policy parameters by a non-parametric response surface model for an indirect parametrized policy motivated by the Bellman equation. Through the interpolating … Read more

Variational Analysis and Applications to Group Dynamics

In this paper, we establish a new version of Ekeland’s variational principle in a new setting of cone pseudo-quasimetric spaces. In constrast to metric spaces, we do not require that each forward Cauchy sequence is forward convergent and that each forward convergent sequence has the unique forward limit. The motivation of this paper comes from … Read more

Solving linear generalized Nash equilibrium problems numerically

This paper considers the numerical solution of linear generalized Nash equilibrium problems. Since many methods for nonlinear problems require the nonsingularity of some second order derivative, standard convergence conditions are not satisfied in our linear case. We provide new convergence criteria for a potential reduction algorithm that allow its application to linear generalized Nash equilibrium … Read more

A Practical Scheme to Compute Pessimistic Bilevel Optimization Problem

In this paper, we present a new computation scheme for pessimistic bilevel optimization problem, which so far does not have any computational methods generally applicable yet. We first develop a tight relaxation and then design a simple scheme to ensure a feasible and optimal solution. Then, we discuss using this scheme to compute linear pessimistic … Read more

Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes

We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can choose the next item dynamically based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We … Read more