Monte Carlo Sampling-Based Methods for Stochastic Optimization

This paper surveys the use of Monte Carlo sampling-based methods for stochastic optimization problems. Such methods are required when—as it often happens in practice—the model involves quantities such as expectations and probabilities that cannot be evaluated exactly. While estimation procedures via sampling are well studied in statistics, the use of such methods in an optimization … Read more

Fully Polynomial Time Approximation Schemes for Stochastic Dynamic Programs

We present a framework for obtaining Fully Polynomial Time Approximation Schemes (FPTASs) for stochastic univariate dynamic programs with either convex or monotone single-period cost functions. This framework is developed through the establishment of two sets of computational rules, namely the Calculus of K-approximation Functions and the Calculus of K-approximation Sets. Using our framework, we provide … Read more

A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes

Multiobjective optimization has a significant number of real life applications. For this reason, in this paper, we consider the problem of finding Pareto critical points for unconstrained multiobjective problems and present a trust-region method to solve it. Under certain assumptions, which are derived in a very natural way from assumptions used by \citet{conn} to establish … Read more

Nonlinear Equilibrium for optimal resource allocation

We consider Nonlinear Equilibrium (NE) for optimal allocation of limited resources. The NE is a generalization of the Walras-Wald equilibrium, which is equivalent to J. Nash equilibrium in an n-person concave game. Finding NE is equivalent to solving a variational inequality (VI) with a monotone and smooth operator on $\Omega = \Re_+^n\cross\Re_+^m$. The projection on … Read more

Solution of Nonlinear Equations via Optimization

This paper presents four optimization models for solving nonlinear equation systems. The models accommodate both over-specified and under-specified systems. A variable endogenization technique that improves efficiency is introduced, and a basic comparative study shows one of the methods presented to be very effective. CitationSiwale, I. (2013). Solution of nonlinear equation systems via optimization. Technical Report … Read more

A continuous gradient-like dynamical approach to Pareto-optimization in Hilbert spaces

In a Hilbert space setting, we consider new continuous gradient-like dynamical systems for constrained multiobjective optimization. This type of dynamics was first investigated by Cl. Henry, and B. Cornet, as a model of allocation of resources in economics. Based on the Yosida regularization of the discontinuous part of the vector field which governs the system, … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

A splitting minimization method on geodesic spaces

We present in this paper the alternating minimization method on CAT(0) spaces for solving unconstraints convex optimization problems. Under the assumption that the function being minimize is convex, we prove that the sequence generated by our algorithm converges to a minimize point. The results presented in this paper are the first ones of this type … Read more

Properly optimal elements in vector optimization with variable ordering structures

In this paper, proper optimality concepts in vector optimization with variable ordering structures are introduced for the first time and characterization results via scalarizations are given. New type of scalarizing functionals are presented and their properties are discussed. The scalarization approach suggested in the paper does not require convexity and boundedness conditions. CitationPreprint of the … Read more

Smoothness Properties of a Regularized Gap Function for Quasi-Variational Inequalities

This article studies continuity and differentiability properties for a reformulation of a finite-dimensional quasi-variational inequality (QVI) problem using a regularized gap function approach. For a special class of QVIs, this gap function is continuously differentiable everywhere, in general, however, it has nondifferentiability points. We therefore take a closer look at these nondifferentiability points and show, … Read more