Learning the Follower’s Objective Function in Sequential Bilevel Games

We consider bilevel optimization problems in which the leader has no or only partial knowledge about the objective function of the follower. The studied setting is a sequential one in which the bilevel game is played repeatedly. This allows the leader to learn the objective function of the follower over time. We focus on two … Read more

Transformation of Bilevel Optimization Problems into Single-Level Ones

Bilevel optimization problems are hierarchical problems with a constraint set which is a subset of the graph of the solution set mapping of a second optimization problem. To investigate their properties and derive solution algorithms, their transformation into single-level ones is necessary. For this, various approaches have been developed. The rst and most often used … Read more

On the equilibrium prices of a regular locally Lipschitz exchange economy

We extend classical results by Debreu and Dierker about equilibrium prices of a regular economy with continuously differentiable demand functions/excess demand function to a regular exchange economy with these functions being locally Lipschitz. Our concept of a regular economy is based on Clarke’s concept of regular value and we show that such a regular economy … Read more

Solution Path of Time-varying Markov Random Fields with Discrete Regularization

We study the problem of inferring sparse time-varying Markov random fields (MRFs) with different discrete and temporal regularizations on the parameters. Due to the intractability of discrete regularization, most approaches for solving this problem rely on the so-called maximum-likelihood estimation (MLE) with relaxed regularization, which neither results in ideal statistical properties nor scale to the … Read more

A Multicut Approach to Compute Upper Bounds for Risk-Averse SDDP

Stochastic Dual Dynamic Programming (SDDP) is a widely used and fundamental algorithm for solving multistage stochastic optimization problems. Although SDDP has been frequently applied to solve risk-averse models with the Conditional Value-at-Risk (CVaR), it is known that the estimation of upper bounds is a methodological challenge, and many methods are computationally intensive. In practice, this … Read more

A Tutorial on Solving Single-Leader-Multi-Follower Problems using SOS1 Reformulations

In this tutorial we consider single-leader-multi-follower games in which the models of the lower-level players have polyhedral feasible sets and convex objective functions. This situation allows for classic KKT reformulations of the separate lower-level problems, which lead to challenging single-level reformulations of MPCC type. The main contribution of this tutorial is to present a ready-to-use … Read more

Duality of upper bounds in stochastic dynamic programming

For multistage stochastic programming problems with stagewise independent uncertainty, dynamic programming algorithms calculate polyhedral approximations for the value functions at each stage.  The SDDP algorithm provides piecewise linear lower bounds, in the spirit of the L-shaped algorithm, and corresponding upper bounds took a longer time to appear.  One strategy uses the primal dynamic programming recursion … Read more

Modified Monotone Policy Iteration for Interpretable Policies in Markov Decision Processes and the Impact of State Ordering Rules

Optimizing interpretable policies for Markov Decision Processes (MDPs) can be computationally intractable for large-scale MDPs, e.g., for monotone policies, the optimal interpretable policy depends on the initial state distribution, precluding standard dynamic programming techniques. Previous work has proposed Monotone Policy Iteration (MPI) to produce a feasible solution for warm starting a Mixed Integer Linear Program … Read more

A Short Proof of Tight Bounds on the Smallest Support Size of Integer Solutions to Linear Equations

In this note, we study the size of the support of solutions to linear Diophantine equations $Ax=b, ~x\in\Z^n$ where $A\in\Z^{m\times n}, b\in\Z^n$. We give an asymptotically tight upper bound on the smallest support size, parameterized by $\|A\|_\infty$ and $m$, and taken as a worst case over all $b$ such that the above system has a … Read more