Adjustable Robust Optimization Models for Nonlinear Multi-Period Optimization

We study multi-period nonlinear optimization problems whose parameters are uncertain. We assume that uncertain parameters are revealed in stages and model them using the adjustable robust optimization approach. For problems with polytopic uncertainty, we show that quasi-convexity of the optimal value function of certain subproblems is sufficient for the reducibility of the resulting robust optimization … Read more

Robust Profit Opportunities in Risky Financial Portfolios

For risky financial securities with given expected return vector and covariance matrix, we propose the concept of a robust profit opportunity in single and multiple period settings. We show that the problem of finding the “most robust” profit opportunity can be solved as a convex quadratic programming problem, and investigate its relation to the Sharpe … Read more

Stochastic p-Robust Location Problems

Many objectives have been proposed for optimization under uncertainty. The typical stochastic programming objective of minimizing expected cost may yield solutions that are inexpensive in the long run but perform poorly under certain realizations of the random data. On the other hand, the typical robust optimization objective of minimizing maximum cost or regret tends to … Read more

Robust Capacity Expansion of Transit Networks

In this paper we present a methodology to decide capacity expansions for a transit network that finds a robust solution with respect to the uncertainty in demands and travel times. We show that solving for a robust solution is a computationally tractable problem under conditions that are reasonable for a transportation system. For example, the … Read more

Sensitivity analysis for linear optimization problem with fuzzy data in the objective function

Linear programming problems with fuzzy coefficients in the objective function are considered. Emphasis is on the dependence of the optimal solution from linear perturbations of the membership functions of the objective function coefficients as well as on the computation of a robust solution of the fuzzy linear problem if the membership functions are not surely … Read more

Strong Formulations of Robust Mixed 0-1 Programming

We describe strong mixed-integer programming formulations for robust mixed 0-1 programming with uncertainty in the objective coefficients. In particular, we focus on an objective uncertainty set described as a polytope with a budget constraint. We show that for a robust 0-1 problem, there is a tight linear programming formulation with size polynomial in the size … Read more

Reliability Models for Facility Location: The Expected Failure Cost Case

Classical facility location models like the P-median problem (PMP) and the uncapacitated fixed-charge location problem (UFLP) implicitly assume that once constructed, the facilities chosen will always operate as planned. In reality, however, facilities “fail” from time to time due to poor weather, labor actions, changes of ownership, or other factors. Such failures may lead to … Read more

On a class of minimax stochastic programs

For a particular class of minimax stochastic programming models, we show that the problem can be equivalently reformulated into a standard stochastic programming problem. This permits the direct use of standard decomposition and sampling methods developed for stochastic programming. We also show that this class of minimax stochastic programs subsumes a large family of mean-risk … Read more

Optimization of A Fed-batch Fermentation Process Control Competition Problem Using NEOS

An optimal control solution to a fed-batch fermentation process, responding to a competition call, was developed using NEOS Server. Substantial improvement to the nominal performance achieved in the paper demonstrates the ability of the NEOS Server and the APPS algorithm. CitationProceedings of Inst. of Mechanical Engineers , Part-I (UK). To appear. (Accepted May 2003).ArticleDownload View … Read more

A hybrid algorithm for nonlinear equality constrained optimization problems: global and local convergence theory

In this paper we combine both trust-region and linesearch globalization strategies in a globally convergent hybrid algorithm to solve a continuously differentiable nonlinear equality constrained minimization problem. First, the trust-region approach is used to determine a descent direction of the augmented Lagrangian chosen as the merit function, and second, linesearch techniques are used to obtain … Read more