A New Stochastic Algorithm for Engineering Optimization Problems

This paper proposes a new stochastic algorithm, Search via Probability (SP) algorithm, for single-objective optimization problems. The SP algorithm uses probabilities to control the process of searching for optimal solutions. We calculate probabilities of the appearance of a better solution than the current one on each iteration, and on the performance of SP algorithm we … Read more

Asynchronous parallel generating set search for linearly-constrained optimization

Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the … Read more

Goal Driven Optimization

Achieving a targeted objective, goal or aspiration level are relevant aspects of decision making under uncertainties. We develop a goal driven stochastic optimization model that takes into account an aspiration level. Our model maximizes the shortfall aspiration level criterion}, which encompasses the probability of success in achieving the goal and an expected level of under-performance … Read more

Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty

Traditional models of decision-making under uncertainty assume perfect information, i.e., accurate values for the system parameters and specific probability distributions for the random variables. However, such precise knowledge is rarely available in practice, and a strategy based on erroneous inputs might be infeasible or exhibit poor performance when implemented. The purpose of this tutorial is … Read more

Polyhedral aspects of a robust knapsack problem

While dealing with uncertainty in linear programs, the robust optimization framework proposed by Bertsimas and Sim appears as relevant. In particular, it can readily be extended for integer linear programming. This paper outlines the polyhedral impacts of this robust model for the 0-1 knapsack problem. It shows especially how the classical cover cuts can be … Read more

On the Quality of a Semidefinite Programming Bound for Sparse Principal Component Analysis

We examine the problem of approximating a positive, semidefinite matrix $\Sigma$ by a dyad $xx^T$, with a penalty on the cardinality of the vector $x$. This problem arises in sparse principal component analysis, where a decomposition of $\Sigma$ involving sparse factors is sought. We express this hard, combinatorial problem as a maximum eigenvalue problem, in … Read more

A robust approach to the chance-constrained knapsack problem

Chance-constrained programming is a relevant model for many concrete problems. However, it is known to be very hard to tackle directly. In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on the recent advances in robust optimization, a tractable combinatorial algorithm is proposed to solve CKP. It always provides feasible solutions for CKP. … Read more

A Tractable Approximation of Stochastic Programming via Robust Optimization

Stochastic programming, despite its immense modeling capabilities, is well known to be computationally excruciating. In this paper, we introduce a unified framework of approximating multiperiod stochastic programming from the perspective of robust optimization. Specifically, we propose a framework that integrates multistage modeling with safeguarding constraints. The framework is computationally tractable in the form of second … Read more

A Robust Optimization Framework for Analyzing Distribution Systems with Transshipment

This paper studies a distribution system consisting of multiple retail locations with transshipment operations among the retailers. Due to the difficulty in computing the optimal solution imposed by the transshipment operations and in estimating shortage cost from a practical perspective, we propose a robust optimization framework for analyzing the impact of transshipment operations on such … Read more

Single-Product Pricing via Robust Optimization

We present a robust optimization approach to the problem of pricing a capacitated product over a finite time horizon in the presence of demand uncertainty. This technique does not require the knowledge of the underlying probability distributions, which in practice are difficult to estimate accurately, and instead models random variables as uncertain parameters belonging to … Read more