Two-Stage Facility Location Problems with Restricted Recourse

We introduce a new class of two-stage stochastic uncapacitated facility location problems under system nervousness considerations. The location and allocation decisions are made under uncertainty, while the allocation decisions may be altered in response to the realizations of the uncertain parameters. A practical concern is that the uncertainty-adaptive second-stage allocation decisions might substantially deviate from … Read more

Risk-Averse Bargaining in a Stochastic Optimization Context

Problem definition: Bargaining situations are ubiquitous in economics and management. We consider the problem of bargaining for a fair ex-ante distribution of random profits arising from a cooperative effort of a fixed set of risk-averse agents. Our approach integrates optimal managerial decision making into bargaining situations with random outcomes and explicitly models the impact of … Read more

Optimal Scenario Generation for Heavy-tailed Chance Constrained Optimization

We consider a generic class of chance-constrained optimization problems with heavy-tailed (i.e., power-law type) risk factors. In this setting, we use the scenario approach to obtain a constant approximation to the optimal solution with a computational complexity that is uniform in the risk tolerance parameter. We additionally illustrate the efficiency of our algorithm in the … Read more

Scenario generation using historical data paths

In this paper, we present a method for generating scenarios by selection from historical data. We start with two models for a univariate single-period case and then extend the better-performing one to the case of selecting sequences of multivariate data. We then test the method on data series for wind- and solar-power generation in Scandinavia. … Read more

Distributionally Robust Optimization under Decision-Dependent Ambiguity Set with an Application to Machine Scheduling

We introduce a new class of distributionally robust optimization problems under decision dependent ambiguity sets. In particular, as our ambiguity sets, we consider balls centered on a decision-dependent probability distribution. The balls are based on a class of earth mover’s distances that includes both the total variation distance and the Wasserstein metrics. We discuss the … Read more

Games with distributionally robust joint chance constraints

This paper studies an n-player non-cooperative game with strategy sets defined by stochastic linear constraints. The stochastic constraints of each player are jointly satisfied with a probability exceeding a given threshold. We consider the case where the row vectors defining the constraints are independent random vectors whose probability distributions are not completely known and belong … Read more

Risk-Neutral and Risk-Averse Transmission Switching for Load Shed Recovery

Maintaining an uninterrupted supply of electricity is a fundamental goal of power systems operators. However, due to critical outage events, customer demand or load is at times disconnected or shed temporarily. While deterministic optimization models have been devised to help operators expedite load shed recovery by harnessing the flexibility of the grid’s topology (i.e., transmission … Read more

A Regularized Smoothing Method for Fully Parameterized Convex Problems with Applications to Convex and Nonconvex Two-Stage Stochastic Programming

We present an approach to regularize and approximate solution mappings of parametric convex optimization problems that combines interior penalty (log-barrier) solutions with Tikhonov regularization. Because the regularized mappings are single-valued and smooth under reasonable conditions, they can be used to build a computationally practical smoothing for the associated optimal value function. The value function in … Read more

Data-Driven Two-Stage Conic Optimization with Zero-One Uncertainties

We address high-dimensional zero-one random parameters in two-stage convex conic optimization problems. Such parameters typically represent failures of network elements and constitute rare, high-impact random events in several applications. Given a sparse training dataset of the parameters, we motivate and study a distributionally robust formulation of the problem using a Wasserstein ambiguity set centered at … Read more

Stochastic Dual Dynamic Programming for Multistage Stochastic Mixed-Integer Nonlinear Optimization

In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with \emph{non-Lipschitz-continuous} value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient … Read more