Acceleration of SVRG and Katyusha X by Inexact Preconditioning

Empirical risk minimization is an important class of optimization problems with many popular machine learning applications, and stochastic variance reduction methods are popular choices for solving them. Among these methods, SVRG and Katyusha X (a Nesterov accelerated SVRG) achieve fast convergence without substantial memory requirement. In this paper, we propose to accelerate these two algorithms … Read more

Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system

We develop a stochastic optimization model for scheduling a hybrid solar-battery storage system. Solar power in excess of the promise can be used to charge the battery, while power short of the promise is met by discharging the battery. We ensure reliable operations by using a joint chance constraint. Models with a few hundred scenarios … Read more

On the Stochastic Vehicle Routing Problem with time windows, correlated travel times, and time dependency

Most state-of-the-art algorithms for the Vehicle Routing Problem, such as Branch-and- Price algorithms or meta heuristics, rely on a fast feasibility test for a given route. We devise the fi rst approach to approximately check feasibility in the Stochastic Vehicle Routing Problem with time windows, where travel times are correlated and depend on the time of … Read more

Variable smoothing for convex optimization problems using stochastic gradients

We aim to solve a structured convex optimization problem, where a nonsmooth function is composed with a linear operator. When opting for full splitting schemes, usually, primal-dual type methods are employed as they are effective and also well studied. However, under the additional assumption of Lipschitz continuity of the nonsmooth function which is composed with … Read more

Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation

We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation, and illustrate empirically that the reformulation can … Read more

Risk-Sensitive Variational Bayes: Formulations and Bounds

We study data-driven decision-making problems in a parametrized Bayesian framework. We adopt a risk-sensitive approach to modeling the interplay between statistical estimation of parameters and optimization, by computing a risk measure over a loss/disutility function with respect to the posterior distribution over the parameters. While this forms the standard Bayesian decision-theoretic approach, we focus on … Read more

A Scenario-Based Approach for the Vehicle Routing Problem with Roaming Delivery Locations under Stochastic Travel Times

We address a stochastic variant of the Vehicle Routing Problem with Roaming Delivery Locations. In this model, direct-to-consumer deliveries can be made in the trunk of the customer’s car, while the vehicle is parked at a location along the customer’s itinerary. The stochasticity arises from the uncertainty in travel times and the problem is formulated … Read more

A Python package for multi-stage stochastic programming

This paper presents a Python package to solve multi-stage stochastic linear programs (MSLP) and multi-stage stochastic integer programs (MSIP). Algorithms based on an extensive formulation and Stochastic Dual Dynamic (Integer) Programming (SDDP/SDDiP) method are implemented. The package is synthetically friendly and has a number of features which are not available in the competing software packages. … Read more

Stochastic Lipschitz Dynamic Programming

We propose a new algorithm for solving multistage stochastic mixed integer linear programming (MILP) problems with complete continuous recourse. In a similar way to cutting plane methods, we construct nonlinear Lipschitz cuts to build lower approximations for the non-convex cost to go functions. An example of such a class of cuts are those derived using … Read more

A Framework for Solving Chance-Constrained Linear Matrix Inequality Programs

We propose a novel partial sample average approximation (PSAA) framework to solve the two main types of chance-constrained linear matrix inequality (CCLMI) problems: CCLMI with random technology matrix, and CCLMI with random right-hand side. We propose a series of computationally tractable PSAA-based approximations for CCLMI problems, analyze their properties, and derive sufficient conditions ensuring convexity. … Read more