A Benders squared (B2) framework for infinite-horizon stochastic linear programs

We propose a nested decomposition scheme for infinite-horizon stochastic linear programs. Our approach can be seen as a provably convergent extension of stochastic dual dynamic programming to the infinite-horizon setting: we explore a sequence of finite-horizon problems of increasing length until we can prove convergence with a given confidence level. The methodology alternates between a … Read more

Bi-objective autonomous vehicle repositioning problem with travel time uncertainty

We study the problem of repositioning autonomous vehicles in a shared mobility system in order to simultaneously minimize the unsatisfied demand and the total operating cost. We first present a mixed integer linear programming formulation for the deterministic version of the problem, and based on that we develop an extended formulation that is easier to … Read more

Discrete Approximation of Two-Stage Stochastic and Distributionally Robust Linear Complementarity Problems

In this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative convergence for the solutions obtained from solving the discretized two-stage stochastic LCP (SLCP). We ex- plain how the discretized two-stage SLCP may … Read more

Optimizing power generation in the presence of micro-grids

In this paper we consider energy management optimization problems in a future wherein an interaction with micro-grids has to be accounted for. We will model this interaction through a set of contracts between the generation companies owning centralized assets and the micro-grids. We will formulate a general stylized model that can, in principle, account for … Read more

Revisiting Approximate Linear Programming Using a Saddle Point Approach

Approximate linear programs (ALPs) are well-known models for computing value function approximations (VFAs) of intractable Markov decision processes (MDPs) arising in applications. VFAs from ALPs have desirable theoretical properties, define an operating policy, and provide a lower bound on the optimal policy cost, which can be used to assess the suboptimality of heuristic policies. However, … Read more

Robust Stochastic Optimization Made Easy with RSOME

We present a new distributionally robust optimization model called robust stochastic optimization (RSO), which unifies both scenario-tree based stochastic linear optimization and distributionally robust optimization in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We also develop a new algebraic modeling package, RSOME to facilitate the implementation of RSO models. … Read more

The Adaptive Sampling Gradient Method: Optimizing Smooth Functions with an Inexact Oracle

Consider settings such as stochastic optimization where a smooth objective function $f$ is unknown but can be estimated with an \emph{inexact oracle} such as quasi-Monte Carlo (QMC) or numerical quadrature. The inexact oracle is assumed to yield function estimates having error that decays with increasing oracle effort. For solving such problems, we present the Adaptive … Read more

A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

Vector Transport-Free SVRG with General Retraction for Riemannian Optimization: Complexity Analysis and Practical Implementation

In this paper, we propose a vector transport-free stochastic variance reduced gradient (SVRG) method with general retraction for empirical risk minimization over Riemannian manifold. Existing SVRG methods on manifold usually consider a specific retraction operation, and involve additional computational costs such as parallel transport or vector transport. The vector transport-free SVRG with general retraction we … Read more

Multicut decomposition methods with cut selection for multistage stochastic programs

We introduce a variant of Multicut Decomposition Algorithms (MuDA), called CuSMuDA (Cut Selection for Multicut Decomposition Algorithms), for solving multistage stochastic linear programs that incorporates strategies to select the most relevant cuts of the approximate recourse functions. We prove the convergence of the method in a finite number of iterations and use it to solve … Read more