Tractable algorithms for chance-constrained combinatorial problems

This paper aims at proposing tractable algorithms to find effectively good solutions to large size chance-constrained combinatorial problems. A new robust model is introduced to deal with uncertainty in mixed-integer linear problems. It is shown to be strongly related to chance-constrained programming when considering pure 0-1 problems. Furthermore, its tractability is highlighted. Then, an optimization … Read more

Self-concordant Tree and Decomposition Based Interior Point Methods for Stochastic Convex Optimization Problem

We consider barrier problems associated with two and multistage stochastic convex optimization problems. We show that the barrier recourse functions at any stage form a self-concordant family with respect to the barrier parameter. We also show that the complexity value of the first stage problem increases additively with the number of stages and scenarios. We … Read more

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed Integer Programs

Two-stage stochastic mixed-integer programming (SMIP) problems with recourse are generally difficult to solve. This paper presents a first computational study of a disjunctive cutting plane method for stochastic mixed 0-1 programs that uses lift-and-project cuts based on the extensive form of the two-stage SMIP problem. An extension of the method based on where the data … Read more

An integer programming approach for linear programs with probabilistic constraints

Linear programs with joint probabilistic constraints (PCLP) are difficult to solve because the feasible region is not convex. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We give a mixed-integer programming formulation for this special case and study the relaxation … Read more

Robust Inventory Management Using Tractable Replenishment Policies

We propose tractable replenishment policies for a multi-period, single product inventory control problem under ambiguous demands, that is, only limited information of the demand distributions such as mean, support and deviation measures are available. We obtain the parameters of the tractable replenishment policies by solving a deterministic optimization problem in the form of second order … Read more

On the solution of stochastic multiobjective integer linear programming problems with a parametric study

In this study we consider a multiobjective integer linear stochastic programming problem with individual chance constraints. We assume that there is randomness in the right-hand sides of the constraints only and that the random variables are normally distributed. Some stability notions for such problem are characterized. An auxiliary problem is discussed and an algorithm as … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

E-model for Transportation Problem of Linear Stochastic Fractional Programming

This paper deals with the so-called transportation problem of linear stochastic fractional programming, and emphasizes the wide applicability of LSFP. The transportation problem, received this name because many of its applications involve in determining how to optimally transport goods. However, some of its applications (e.g., production scheduling) actually have nothing to do with transportation. The … Read more

An Exact Solution Approach for Portfolio Optimization Problems under Stochastic and Integer Constraints

In this paper, we study extensions of the classical Markowitz mean-variance portfolio optimization model. First, we consider that the expected asset returns are stochastic by introducing a probabilistic constraint which imposes that the expected return of the constructed portfolio must exceed a prescribed return threshold with a high confidence level. We study the deterministic equivalents … Read more

MIP Reformulations of the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: $min \{ cx \ |\ {\mathbb P} (Ax\ge \xi) \ge p,\ x_{j}\in \{0,1\}^N\}$ where $A$ is a 0-1 matrix, $\xi$ is a random 0-1 vector and $p\in (0,1]$ is the threshold probability level. We formulate (PSC) as a mixed integer … Read more