Exterior-point Optimization for Nonconvex Learning

In this paper we present the nonconvex exterior-point optimization solver (NExOS)—a novel first-order algorithm tailored to constrained nonconvex learning problems. We consider the problem of minimizing a convex function over nonconvex constraints, where the projection onto the constraint set is single-valued around local minima. A wide range of nonconvex learning problems have this structure including … Read more

On the Complexity of Inverse Mixed Integer Linear Optimization

Inverse optimization is the problem of determining the values of missing input parameters that are closest to given estimates and that will make a given solution optimal. This study is concerned with the relationship of a particular inverse mixed integer linear optimization problem (MILPs) to both the original problem and the separation problem associated with … Read more

A modern POPMUSIC matheuristic for the capacitated vehicle routing problem

This work proposes a partial optimization metaheuristic under special intensification conditions (POPMUSIC) for the classical capacitated vehicle routing problem (CVRP). The proposed approach uses a branch-cut-and-price algorithm as a powerful heuristic to solve subproblems whose dimensions are typically between 25 and 200 customers. The whole algorithm can be seen as the application of local search … Read more

Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems

Despite the success of branch-and-cut methods for solving mixed integer bilevel linear optimization problems (MIBLPs) in practice, there are still gaps in both the theory and practice surrounding these methods. In the first part of this paper, we lay out a basic theory of valid inequalities and cutting-plane methods for MIBLPs that parallels the existing … Read more

An Exact Method for Assortment Optimization under the Nested Logit Model

We study the problem of finding an optimal assortment of products maximizing the expected revenue, in which customer preferences are modeled using a Nested Logit choice model. This problem is known to be polynomially solvable in a specific case and NP-hard otherwise, with only approximation algorithms existing in the literature. For the NP-hard cases, we … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

Graph Recovery From Incomplete Moment Information

We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as for instance in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to … Read more

The Dynamic Freight Routing Problem for Less-than-Truckload Carriers

Less-than-Truckload (LTL) carriers transport freight shipments from origins to destinations by consolidating freight using a network of terminals. As daily freight quantities are uncertain, carriers dynamically adjust planned freight routes on the day of operations. We introduce the Dynamic Freight Routing Problem (DFRP) and model this problem as a Markov Decision Process (MDP). To overcome … Read more

Stochastic Inventory Routing with Time-based Shipment Consolidation

Inspired by the retail industry, we introduce a fundamentally new approach towards stochastic inventory routing by replenishing retailers from a central warehouse using a time-based shipment consolidation policy. Such a time-based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed times, is essential in practice. It allows for easy incorporation with dependent … Read more

Discrete Multi-Module Capacitated Lot-Sizing Problems with Multiple Items

We study single-item discrete multi-module capacitated lot-sizing problems where the amount produced in each time period is equal to the summation of binary multiples of the capacities of n available different modules (or machines). For fixed n≥2, we develop fixed-parameter tractable (polynomial) exact algorithms that generalize the algorithms of van Vyve (2007) for n=1. We … Read more