Upper and Lower Bounds for Large Scale Multistage Stochastic Optimization Problems: Decomposition Methods

We consider a large scale multistage stochastic optimization problem involving multiple units. Each unit is a (small) control system. Static constraints couple units at each stage. To tackle such large scale problems, we propose two decomposition methods, whether handling the coupling constraints by prices or by resources. We introduce the sequence (one per stage) of … Read more

Facial Reduction for Symmetry Reduced Semidefinite Programs

We consider both facial and symmetry reduction techniques for semidefinite programming, SDP. We show that the two together fit surprisingly well in an alternating direction method of multipliers, ADMM, approach. The combination of facial and symmetry reduction leads to a significant improvement in both numerical stability and running time for both the ADMM and interior … Read more

Upper and Lower Bounds for Large Scale Multistage Stochastic Optimization Problems: Application to Microgrid Management

We consider a microgrid where different prosumers exchange energy altogether by the edges of a given network. Each prosumer is located to a node of the network and encompasses energy consumption, energy production and storage capacities (battery, electrical hot water tank). The problem is coupled both in time and in space, so that a direct … Read more

A Limiting Analysis on Regularization of Singular SDP and its Implication to Infeasible Interior-point Algorithms

We consider primal-dual pairs of semidefinite programs and assume that they are ill-posed, i.e., both primal and dual are either weakly feasible or weakly infeasible. Under such circumstances, strong duality may break down and the primal and dual might have a nonzero duality gap. Nevertheless, there are arbitrary small perturbations to the problem data which … Read more

A New Preconditioning Approach for an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming

In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a … Read more

The Fermat Rule for Set Optimization Problems with Lipschitzian Set-Valued Mappings

n this paper, we consider set optimization problems with respect to the set approach. Specifically, we deal with the lower less and the upper less set relations. First, we derive properties of convexity and Lipschitzianity of suitable scalarizing functionals, under the same assumption on the set-valued objective mapping. We then obtain upper estimates of the … Read more

Convex Hulls for Non-Convex Mixed-Integer Quadratic Programs with Bounded Variables

We consider non-convex mixed-integer quadratic programs in which all variables are explicitly bounded. Many exact methods for such problems use additional variables, representing products of pairs of original variables. We study the convex hull of feasible solutions in this extended space. Some other approaches use bit representation to convert bounded integer variables into binary variables. … Read more

Inversion of Convection-Diffusion Equation with Discrete Sources

We present a convection-diffusion inverse problem that aims to identify an unknown number of sources and their locations. We model the sources using a binary function, and we show that the inverse problem can be formulated as a large-scale mixed-integer nonlinear optimization problem. We show empirically that current state-of-the-art mixed-integer solvers cannot solve this problem … Read more

Automatic generation of FPTASes for stochastic monotone dynamic programs made easier

In this paper we go one step further in the automatic generation of FPTASes for multi-stage stochastic dynamic programs with scalar state and action spaces, in where the cost-to-go functions have a monotone structure in the state variable. While there exist a few frameworks for automatic generation of FPTASes, so far none of them is … Read more

Proximity measures based on KKT points for constrained multi-objective optimization

An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush-Kuhn-Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the … Read more