Expert-Enhanced Machine Learning for Cardiac Arrhythmia Classification

We propose a new method for the classification task of distinguishing atrial Fibrillation (AFib) from regular atrial tachycardias including atrial Flutter (AFlu) on the basis of a surface electrocardiogram (ECG). Although recently many approaches for an automatic classification of cardiac arrhythmia were proposed, to our knowledge none of them can distinguish between these two. We … Read more

Stochastic DC Optimal Power Flow With Reserve Saturation

We propose an optimization framework for stochastic optimal power flow with uncertain loads and renewable generator capacity. Our model follows previous work in assuming that generator outputs respond to load imbalances according to an affine control policy, but introduces a model of saturation of generator reserves by assuming that when a generator’s target level hits … Read more

Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear MPC

This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear Model Predictive Control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as … Read more

A Fast Max Flow Algorithm

In 2013, Orlin proved that the max flow problem could be solved in $O(nm)$ time. His algorithm ran in $O(nm + m^{1.94})$ time, which was the fastest for graphs with fewer than $n^{1.06}$ arcs. If the graph was not sufficiently sparse, the fastest running time was an algorithm due to King, Rao, and Tarjan. We … Read more

Inexact proximal stochastic second-order methods for nonconvex composite optimization

In this paper, we propose a framework of Inexact Proximal Stochastic Second-order (IPSS) methods for solving nonconvex optimization problems, whose objective function consists of an average of finitely many, possibly weakly, smooth functions and a convex but possibly nons- mooth function. At each iteration, IPSS inexactly solves a proximal subproblem constructed by using some positive … Read more

Gamma-Robust Linear Complementarity Problems with Ellipsoidal Uncertainty Sets

We study uncertain linear complementarity problems (LCPs), i.e., problems in which the LCP vector q or the LCP matrix M may contain uncertain parameters. To this end, we use the concept of Gamma-robust optimization applied to the gap function formulation of the LCP. Thus, this work builds upon [16]. There, we studied Gamma-robustified LCPs for … Read more

Stochastic Discrete First-order Algorithm for Feature Subset Selection

This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. (2016) recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a … Read more

A geometric way to build strong mixed-integer programming formulations

We give an explicit geometric way to build mixed-integer programming (MIP) formulations for unions of polyhedra. The construction is simply described in terms of spanning hyperplanes in an r-dimensional linear space. The resulting MIP formulation is ideal, and uses exactly r integer variables and 2 x (# of spanning hyperplanes) general inequality constraints. We use … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

Genericity in linear algebra and analysis with applications to optimization

This report gives a concise overview into genericity results for sets of matrices, linear and nonlinear equations as well as for unconstrained and constrained optimization problems. We present the generic behavior of non-parametric problems and parametric families of problems. The genericity analysis is based on results from differential geometry, in particular transversality theorems. ArticleDownload View … Read more