A massively parallel interior-point solver for linear energy system models with block structure

Linear energy system models are often a crucial component of system design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers—already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an … Read more

A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints

Stochastic convex optimization problems with expectation constraints (SOECs) are encountered in statistics and machine learning, business, and engineering. In data-rich environments, the SOEC objective and constraints contain expectations defined with respect to large datasets. Therefore, efficient algorithms for solving such SOECs need to limit the fraction of data points that they use, which we refer … Read more

Competing Objective Optimization in Networked Swarm Systems

In this paper, we develop a decentralized collaborative sensing algorithm where the sensors are located on-board autonomous unmanned aerial vehicles. We develop this algorithm in the context of a target tracking application, where the objective is to maximize the tracking performance measured by the meansquared error between the target state estimate and the ground truth. … Read more

Benders Decomposition with Adaptive Oracles for Large Scale Optimization

This paper proposes an algorithm to efficiently solve large optimization problems which exhibit a column bounded block-diagonal structure, where subproblems differ in right-hand side and cost coefficients. Similar problems are often tackled using cutting-plane algorithms, which allow for an iterative and decomposed solution of the problem. When solving subproblems is computationally expensive and the set … Read more

On the use of polynomial models in multiobjective directional direct search

Polynomial interpolation or regression models are an important tool in Derivative-free Optimization, acting as surrogates of the real function. In this work, we propose the use of these models in the multiobjective framework of directional direct search, namely the one of Direct Multisearch. Previously evaluated points are used to build quadratic polynomial models, which are … Read more

Random projections for quadratic programs

Random projections map a set of points in a high dimensional space to a lower dimen- sional one while approximately preserving all pairwise Euclidean distances. While random projections are usually applied to numerical data, we show they can be successfully applied to quadratic programming formulations over a set of linear inequality constraints. Instead of solving … Read more

Robust stochastic optimization with the proximal point method

Standard results in stochastic convex optimization bound the number of samples that an algorithm needs to generate a point with small function value in expectation. In this work, we show that a wide class of such algorithms on strongly convex problems can be augmented with sub-exponential confidence bounds at an overhead cost that is only … Read more

Complexity of Proximal augmented Lagrangian for nonconvex optimization with nonlinear equality constraints

We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an $\epsilon$ first-order (second-order) optimal point for the original problem can be guaranteed within $\mathcal{O}(1/ \epsilon^{2 – \eta})$ outer iterations (where $\eta$ is a … Read more

Logic-based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling

The distributed operating room (OR) scheduling problem aims to find an assignment of surgeries to ORs across collaborating hospitals that share their waiting lists and ORs. We propose a stochastic extension of this problem where surgery durations are considered to be uncertain. In order to obtain solutions for the challenging stochastic model, we use sample … Read more

On Inexact Solution of Auxiliary Problems in Tensor Methods for Convex Optimization

In this paper we study the auxiliary problems that appear in p-order tensor methods for unconstrained minimization of convex functions with \nu-Holder continuous pth derivatives. This type of auxiliary problems corresponds to the minimization of a (p+\nu)-order regularization of the pth order Taylor approximation of the objective. For the case p=3, we consider the use … Read more