Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization

There has been much recent interest in finding unconstrained local minima of smooth functions, due in part of the prevalence of such problems in machine learning and robust statistics. A particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods that make use of regularization and trust regions have been analyzed from such a … Read more

Erratum to: On the DJL conjecture for order 6

In this note an erratum is provided to the article “On the DJL conjecture for order 6” by Naomi Shaked-Monderer, published in Operators and Matrices 11(1), 2017, 71–88. We will demonstrate and correct two errors in this article. The first error is in the statement of a proposition, which omits a certain category of extreme … Read more

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as linear programming and second-order cone … Read more

Random projections for trust region subproblems

The trust region method is an algorithm traditionally used in the field of derivative free optimization. The method works by iteratively constructing surrogate models (often linear or quadratic functions) to approximate the true objective function inside some neighborhood of a current iterate. The neighborhood is called “trust region” in the sense that the model is … Read more

Random projections for linear programming

Random projections are random linear maps, sampled from appropriate distributions, that approximately preserve certain geometrical invariants so that the approximation improves as the dimension of the space grows. The well-known Johnson-Lindenstrauss lemma states that there are \LL{random matrices with surprisingly few rows} that approximately preserve pairwise Euclidean distances among a set of points. This is … Read more

Estimating L1-Norm Best-Fit Lines for Data

The general formulation for finding the L1-norm best-fit subspace for a point set in $m$-dimensions is a nonlinear, nonconvex, nonsmooth optimization problem. In this paper we present a procedure to estimate the L1-norm best-fit one-dimensional subspace (a line through the origin) to data in $\Re^m$ based on an optimization criterion involving linear programming but which … Read more

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifold

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.(2016), from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexact variants of … Read more

Robust Quadratic Programming with Mixed-Integer Uncertainty

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming … Read more

Robust Optimization for the Vehicle Routing Problem with Multiple Deliverymen

This paper studies the vehicle routing problem with time windows and multiple deliverymen in which customer demands are uncertain and belong to a predetermined polytope. In addition to the routing decisions, this problem aims to define the number of deliverymen used to provide the service to the customers on each route. A new mathematical formulation … Read more

Distributed Block-diagonal Approximation Methods for Regularized Empirical Risk Minimization

Designing distributed algorithms for empirical risk minimization (ERM) has become an active research topic in recent years because of the practical need to deal with the huge volume of data. In this paper, we propose a general framework for training an ERM model via solving its dual problem in parallel over multiple machines. Our method … Read more