Variational Geometric Approach to Generalized Differential and Fenchel Conjugate Calculi in Convex Analysis

This paper develops a geometric approach of variational analysis for the case of convex objects considered in locally convex topological spaces and also in Banach space settings. Besides deriving in this way new results of convex calculus, we present an overview of some known achievements with their uni ed and simplified proofs based on the developed … Read more

Modulation Design for MIMO-CoMP HARQ

Modulation diversity (MoDiv) is a simple and practical transmission enhancement technique that utilizes different modulation mappings to reduce packet loss rate and achieve higher link throughput. MoDiv is particularly meaningful and effective in hybrid-ARQ (HARQ) systems. We study the deployment and optimization of MoDiv for HARQ in a MIMOcoordinated multi-point (MIMO-CoMP) scenario under Rician fading … Read more

A parametric programming approach to redefine the global configuration of resource constraints of 0-1-Integer Linear Programming problems.

A mathematical programming approach to deal with the global configuration of resource constraints is presented. A specialized parametric programming algorithm to obtain the pareto set for the biobjective problem that appears to deal with the global configuration for 0-1-Integer Linear Programing problems is presented and implemented. Computational results for Multiconstrained Knapsack problems and Bounded Knapsack … Read more

R-Linear Convergence of Limited Memory Steepest Descent

The limited memory steepest descent method (LMSD) proposed by Fletcher is an extension of the Barzilai-Borwein “two-point step size” strategy for steepest descent methods for solving unconstrained optimization problems. It is known that the Barzilai-Borwein strategy yields a method with an R-linear rate of convergence when it is employed to minimize a strongly convex quadratic. … Read more

Decision Rule Bounds for Two-Stage Stochastic Bilevel Programs

We study stochastic bilevel programs where the leader chooses a binary here-and-now decision and the follower responds with a continuous wait-and-see-decision. Using modern decision rule approximations, we construct lower bounds on an optimistic version and upper bounds on a pessimistic version of the leader’s problem. Both bounding problems are equivalent to explicit mixed-integer linear programs … Read more

Optimized choice of parameters in interior-point methods for linear programming

In this work, we propose a predictor-corrector interior point method for linear programming in a primal-dual context, where the next iterate is chosen by the minimization of a polynomial merit function of three variables: the first is the steplength, the second defines the central path and the third models the weight of a corrector direction. … Read more

The Dynamic Dispatch Waves Problem for Same-Day Delivery

We study same-day delivery systems by formulating the Dynamic Dispatch Waves Problem (DDWP), which models a distribution center where geographically located delivery orders realize dynamically throughout the day. At each decision epoch (wave), the system’s operator chooses whether or not to dispatch a vehicle route loaded with orders ready for service, to minimize vehicle travel … Read more

Can linear superiorization be useful for linear optimization problems?

Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear … Read more

Linear superiorization for infeasible linear programming

Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same … Read more

An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization

We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. In particular, the proposed method enables … Read more